mirror of
https://github.com/andreili/klipper.git
synced 2025-08-24 03:44:06 +02:00
STM32G4 USB controller requires 8 or 16-bit access, not 32-bit Signed-off-by: Alex Maclean <monkeh@monkeh.net>
440 lines
13 KiB
C
440 lines
13 KiB
C
// Hardware interface to "fullspeed USB controller"
|
|
//
|
|
// Copyright (C) 2018-2023 Kevin O'Connor <kevin@koconnor.net>
|
|
//
|
|
// This file may be distributed under the terms of the GNU GPLv3 license.
|
|
|
|
#include <string.h> // NULL
|
|
#include "board/armcm_boot.h" // armcm_enable_irq
|
|
#include "board/armcm_timer.h" // udelay
|
|
#include "board/gpio.h" // gpio_out_setup
|
|
#include "board/io.h" // writeb
|
|
#include "board/usb_cdc.h" // usb_notify_ep0
|
|
#include "board/usb_cdc_ep.h" // USB_CDC_EP_BULK_IN
|
|
#include "command.h" // DECL_CONSTANT_STR
|
|
#include "internal.h" // GPIO
|
|
#include "sched.h" // DECL_INIT
|
|
|
|
#if CONFIG_MACH_STM32F1
|
|
// Transfer memory is accessed with 32bits, but contains only 16bits of data
|
|
typedef volatile uint32_t epmword_t;
|
|
#define WSIZE 2
|
|
#define USBx_IRQn USB_LP_IRQn
|
|
#elif CONFIG_MACH_STM32F0 || CONFIG_MACH_STM32L4
|
|
// Transfer memory is accessed with 16bits and contains 16bits of data
|
|
typedef volatile uint16_t epmword_t;
|
|
#define WSIZE 2
|
|
#define USBx_IRQn USB_IRQn
|
|
#elif CONFIG_MACH_STM32G4
|
|
// Transfer memory is accessed with 16bits and contains 16bits of data
|
|
typedef volatile uint16_t epmword_t;
|
|
#define WSIZE 2
|
|
#define USBx_IRQn USB_LP_IRQn
|
|
#elif CONFIG_MACH_STM32G0
|
|
// Transfer memory is accessed with 32bits and contains 32bits of data
|
|
typedef volatile uint32_t epmword_t;
|
|
#define WSIZE 4
|
|
#define USBx_IRQn USB_IRQn
|
|
#endif
|
|
|
|
// The stm32g0 has slightly different register names
|
|
#if CONFIG_MACH_STM32G0
|
|
#if CONFIG_MACH_STM32G0B1
|
|
#define USB_IRQn USB_UCPD1_2_IRQn
|
|
#endif
|
|
#define USB USB_DRD_FS
|
|
#define USB_PMAADDR USB_DRD_PMAADDR
|
|
#define USB_EPADDR_FIELD USB_CHEP_ADDR
|
|
#define USB_EP_CTR_RX USB_EP_VTRX
|
|
#define USB_EP_CTR_TX USB_EP_VTTX
|
|
#define USB_EPRX_STAT USB_EP_RX_STRX
|
|
#define USB_EPTX_STAT USB_EP_TX_STTX
|
|
#define USB_ISTR_EP_ID USB_ISTR_IDN
|
|
#define USB_CNTR_FRES USB_CNTR_USBRST
|
|
#endif
|
|
|
|
// Some chip variants do not define these fields
|
|
#ifndef USB_EP_DTOG_TX_Pos
|
|
#define USB_EP_DTOG_TX_Pos 6
|
|
#define USB_EP_DTOG_RX_Pos 14
|
|
#endif
|
|
|
|
|
|
/****************************************************************
|
|
* USB transfer memory
|
|
****************************************************************/
|
|
|
|
// Layout of the USB transfer memory
|
|
#define EPM ((epmword_t*)USB_PMAADDR)
|
|
#define EPM_EP_DESC(ep, bufnum) (&EPM[((ep)*2 + (bufnum)) * (4 / WSIZE)])
|
|
#define EPM_BUF_OFFSET 0x10
|
|
#define EPM_EP_BUF_SIZE (64 / WSIZE + 1)
|
|
#define EPM_EP_BUF(ep, bufnum) \
|
|
(&EPM[EPM_BUF_OFFSET + ((ep)*2 + (bufnum)) * EPM_EP_BUF_SIZE])
|
|
#define BUFTX 0
|
|
#define BUFRX 1
|
|
|
|
// Configure the usb descriptor for an endpoint
|
|
static void
|
|
epm_ep_desc_setup(int ep, int bufnum, int rx_size)
|
|
{
|
|
uint32_t addr = (EPM_EP_BUF(ep, bufnum) - EPM) * WSIZE;
|
|
uint32_t count_rx = (rx_size <= 30 ? DIV_ROUND_UP(rx_size, 2) << 10
|
|
: ((DIV_ROUND_UP(rx_size, 32) - 1) << 10) | 0x8000);
|
|
epmword_t *desc = EPM_EP_DESC(ep, bufnum);
|
|
if (WSIZE == 2) {
|
|
desc[0] = addr;
|
|
desc[1] = count_rx;
|
|
} else {
|
|
*desc = addr | (count_rx << 16);
|
|
}
|
|
}
|
|
|
|
// Return number of read bytes on an rx endpoint
|
|
static uint32_t
|
|
epm_get_ep_count_rx(int ep, int bufnum)
|
|
{
|
|
epmword_t *desc = EPM_EP_DESC(ep, bufnum);
|
|
if (WSIZE == 2)
|
|
return desc[1] & 0x3ff;
|
|
return (*desc >> 16) & 0x3ff;
|
|
}
|
|
|
|
// Set number of bytes ready to be transmitted on a tx endpoint
|
|
static void
|
|
epm_set_ep_count_tx(int ep, int bufnum, uint32_t count)
|
|
{
|
|
epmword_t *desc = EPM_EP_DESC(ep, bufnum);
|
|
if (WSIZE == 2) {
|
|
desc[1] = count;
|
|
} else {
|
|
uint32_t addr_tx = (EPM_EP_BUF(ep, bufnum) - EPM) * WSIZE;
|
|
*desc = addr_tx | (count << 16);
|
|
}
|
|
}
|
|
|
|
// Setup the transfer descriptors in dedicated usb memory
|
|
static void
|
|
btable_configure(void)
|
|
{
|
|
epm_ep_desc_setup(0, BUFTX, 0);
|
|
epm_ep_desc_setup(0, BUFRX, USB_CDC_EP0_SIZE);
|
|
epm_ep_desc_setup(USB_CDC_EP_ACM, BUFTX, 0);
|
|
epm_ep_desc_setup(USB_CDC_EP_ACM, BUFRX, 0);
|
|
epm_ep_desc_setup(USB_CDC_EP_BULK_OUT, 0, USB_CDC_EP_BULK_OUT_SIZE);
|
|
epm_ep_desc_setup(USB_CDC_EP_BULK_OUT, 1, USB_CDC_EP_BULK_OUT_SIZE);
|
|
epm_ep_desc_setup(USB_CDC_EP_BULK_IN, 0, 0);
|
|
epm_ep_desc_setup(USB_CDC_EP_BULK_IN, 1, 0);
|
|
}
|
|
|
|
// Read a packet stored in dedicated usb memory
|
|
static uint32_t
|
|
btable_read_packet(int ep, int bufnum, uint8_t *dest, int max_len)
|
|
{
|
|
epmword_t *src = EPM_EP_BUF(ep, bufnum);
|
|
uint32_t count = epm_get_ep_count_rx(ep, bufnum);
|
|
if (count > max_len)
|
|
count = max_len;
|
|
int i;
|
|
for (i=0; i<count/WSIZE; i++) {
|
|
uint32_t d = *src++;
|
|
*dest++ = d;
|
|
*dest++ = d >> 8;
|
|
if (WSIZE == 4) {
|
|
*dest++ = d >> 16;
|
|
*dest++ = d >> 24;
|
|
}
|
|
}
|
|
if (count & (WSIZE-1)) {
|
|
uint32_t d = *src;
|
|
*dest++ = d;
|
|
if ((count & (WSIZE-1)) > 1)
|
|
*dest++ = d >> 8;
|
|
if ((count & (WSIZE-1)) > 2)
|
|
*dest++ = d >> 16;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
// Write a packet to dedicated usb memory
|
|
static void
|
|
btable_write_packet(int ep, int bufnum, const uint8_t *src, int count)
|
|
{
|
|
epmword_t *dest = EPM_EP_BUF(ep, bufnum);
|
|
int i;
|
|
for (i=0; i<count/WSIZE; i++) {
|
|
uint8_t b1 = *src++, b2 = *src++, b3 = 0, b4 = 0;
|
|
if (WSIZE == 4) {
|
|
b3 = *src++;
|
|
b4 = *src++;
|
|
}
|
|
*dest++ = b1 | (b2 << 8) | (b3 << 16) | (b4 << 24);
|
|
}
|
|
if (count & (WSIZE-1)) {
|
|
uint32_t d = *src++;
|
|
if ((count & (WSIZE-1)) > 1)
|
|
d |= *src++ << 8;
|
|
if ((count & (WSIZE-1)) > 2)
|
|
d |= *src++ << 16;
|
|
*dest = d;
|
|
}
|
|
epm_set_ep_count_tx(ep, bufnum, count);
|
|
}
|
|
|
|
|
|
/****************************************************************
|
|
* USB endpoint register
|
|
****************************************************************/
|
|
|
|
#define USB_EPR ((volatile uint32_t *)USB_BASE)
|
|
|
|
#define EPR_TBITS (USB_EP_DTOG_RX | USB_EPRX_STAT \
|
|
| USB_EP_DTOG_TX | USB_EPTX_STAT)
|
|
#define EPR_RWBITS (USB_EPADDR_FIELD | USB_EP_KIND | USB_EP_TYPE_MASK)
|
|
#define EPR_RWCBITS (USB_EP_CTR_RX | USB_EP_CTR_TX)
|
|
|
|
// Calculate the memory update needed to set the epr register
|
|
static uint32_t
|
|
calc_epr_bits(uint32_t epr, uint32_t mask, uint32_t value)
|
|
{
|
|
uint32_t tmask = mask & EPR_TBITS, tvalue = value & tmask;
|
|
uint32_t rwmask = mask & EPR_RWBITS, rwbits = value & rwmask;
|
|
uint32_t cbits = EPR_RWCBITS & ~mask;
|
|
return (((epr & (EPR_RWBITS | tmask)) ^ tvalue) & ~rwmask) | rwbits | cbits;
|
|
}
|
|
|
|
// Check if double buffering endpoint hardware can no longer send/receive
|
|
static int
|
|
epr_is_dbuf_blocking(uint32_t epr)
|
|
{
|
|
return !(((epr >> (USB_EP_DTOG_RX_Pos - USB_EP_DTOG_TX_Pos)) ^ epr)
|
|
& USB_EP_DTOG_TX);
|
|
}
|
|
|
|
|
|
/****************************************************************
|
|
* USB interface
|
|
****************************************************************/
|
|
|
|
static uint32_t bulk_out_pop_count, bulk_out_push_flag;
|
|
|
|
int_fast8_t
|
|
usb_read_bulk_out(void *data, uint_fast8_t max_len)
|
|
{
|
|
if (readl(&bulk_out_push_flag))
|
|
// No data ready
|
|
return -1;
|
|
uint32_t ep = USB_CDC_EP_BULK_OUT;
|
|
int bufnum = bulk_out_pop_count & 1;
|
|
bulk_out_pop_count++;
|
|
uint32_t count = btable_read_packet(ep, bufnum, data, max_len);
|
|
writel(&bulk_out_push_flag, USB_EP_DTOG_TX);
|
|
|
|
// Check if irq handler pulled another packet before push flag update
|
|
uint32_t epr = USB_EPR[ep];
|
|
if (epr_is_dbuf_blocking(epr) && readl(&bulk_out_push_flag)) {
|
|
// Second packet was already read - must notify hardware
|
|
writel(&bulk_out_push_flag, 0);
|
|
USB_EPR[ep] = calc_epr_bits(epr, 0, 0) | USB_EP_DTOG_TX;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static uint32_t bulk_in_push_pos, bulk_in_pop_flag;
|
|
#define BI_START 2
|
|
|
|
int_fast8_t
|
|
usb_send_bulk_in(void *data, uint_fast8_t len)
|
|
{
|
|
if (readl(&bulk_in_pop_flag))
|
|
// No buffer space available
|
|
return -1;
|
|
uint32_t ep = USB_CDC_EP_BULK_IN;
|
|
uint32_t bipp = bulk_in_push_pos, bufnum = bipp & 1;
|
|
bulk_in_push_pos = bipp ^ 1;
|
|
btable_write_packet(ep, bufnum, data, len);
|
|
writel(&bulk_in_pop_flag, USB_EP_DTOG_RX);
|
|
|
|
// Check if hardware needs to be notified
|
|
uint32_t epr = USB_EPR[ep];
|
|
if (epr_is_dbuf_blocking(epr) && readl(&bulk_in_pop_flag)) {
|
|
writel(&bulk_in_pop_flag, 0);
|
|
if (unlikely(bipp & BI_START)) {
|
|
// Two packets are always sent when starting in double
|
|
// buffering mode, so wait for second packet before starting.
|
|
if (bipp == (BI_START | 1)) {
|
|
bulk_in_push_pos = 0;
|
|
writel(&bulk_in_pop_flag, USB_EP_KIND); // Dummy flag
|
|
USB_EPR[ep] = calc_epr_bits(epr, USB_EPTX_STAT
|
|
, USB_EP_TX_VALID);
|
|
}
|
|
} else {
|
|
USB_EPR[ep] = calc_epr_bits(epr, 0, 0) | USB_EP_DTOG_RX;
|
|
}
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
int_fast8_t
|
|
usb_read_ep0(void *data, uint_fast8_t max_len)
|
|
{
|
|
uint32_t ep = 0, epr = USB_EPR[ep];
|
|
if ((epr & USB_EPRX_STAT) != USB_EP_RX_NAK)
|
|
// No data ready
|
|
return -1;
|
|
uint32_t count = btable_read_packet(ep, BUFRX, data, max_len);
|
|
USB_EPR[ep] = calc_epr_bits(epr, USB_EPRX_STAT | USB_EPTX_STAT
|
|
, USB_EP_RX_VALID | USB_EP_TX_NAK);
|
|
return count;
|
|
}
|
|
|
|
int_fast8_t
|
|
usb_read_ep0_setup(void *data, uint_fast8_t max_len)
|
|
{
|
|
return usb_read_ep0(data, max_len);
|
|
}
|
|
|
|
int_fast8_t
|
|
usb_send_ep0(const void *data, uint_fast8_t len)
|
|
{
|
|
uint32_t ep = 0, epr = USB_EPR[ep];
|
|
if ((epr & USB_EPRX_STAT) != USB_EP_RX_VALID)
|
|
// Transfer interrupted
|
|
return -2;
|
|
if ((epr & USB_EPTX_STAT) != USB_EP_TX_NAK)
|
|
// No buffer space available
|
|
return -1;
|
|
btable_write_packet(ep, BUFTX, data, len);
|
|
USB_EPR[ep] = calc_epr_bits(epr, USB_EPTX_STAT, USB_EP_TX_VALID);
|
|
return len;
|
|
}
|
|
|
|
void
|
|
usb_stall_ep0(void)
|
|
{
|
|
uint32_t ep = 0, epr = USB_EPR[ep];
|
|
USB_EPR[ep] = calc_epr_bits(epr, USB_EPRX_STAT | USB_EPTX_STAT
|
|
, USB_EP_RX_STALL | USB_EP_TX_STALL);
|
|
}
|
|
|
|
static uint8_t set_address;
|
|
|
|
void
|
|
usb_set_address(uint_fast8_t addr)
|
|
{
|
|
writeb(&set_address, addr | USB_DADDR_EF);
|
|
usb_send_ep0(NULL, 0);
|
|
}
|
|
|
|
void
|
|
usb_set_configure(void)
|
|
{
|
|
uint32_t ep = USB_CDC_EP_BULK_OUT;
|
|
bulk_out_pop_count = 0;
|
|
USB_EPR[ep] = calc_epr_bits(USB_EPR[ep], USB_EPRX_STAT, USB_EP_RX_VALID);
|
|
|
|
ep = USB_CDC_EP_BULK_IN;
|
|
bulk_in_push_pos = BI_START;
|
|
writel(&bulk_in_pop_flag, 0);
|
|
}
|
|
|
|
|
|
/****************************************************************
|
|
* Setup and interrupts
|
|
****************************************************************/
|
|
|
|
// Configure interface after a USB reset event
|
|
static void
|
|
usb_reset(void)
|
|
{
|
|
uint32_t ep = 0;
|
|
USB_EPR[ep] = 0 | USB_EP_CONTROL | USB_EP_RX_VALID | USB_EP_TX_NAK;
|
|
|
|
ep = USB_CDC_EP_ACM;
|
|
USB_EPR[ep] = (USB_CDC_EP_ACM | USB_EP_INTERRUPT
|
|
| USB_EP_RX_NAK | USB_EP_TX_NAK);
|
|
|
|
ep = USB_CDC_EP_BULK_OUT;
|
|
USB_EPR[ep] = (USB_CDC_EP_BULK_OUT | USB_EP_BULK | USB_EP_KIND
|
|
| USB_EP_RX_NAK | USB_EP_DTOG_TX);
|
|
bulk_out_push_flag = USB_EP_DTOG_TX;
|
|
|
|
ep = USB_CDC_EP_BULK_IN;
|
|
USB_EPR[ep] = (USB_CDC_EP_BULK_IN | USB_EP_BULK | USB_EP_KIND
|
|
| USB_EP_TX_NAK);
|
|
bulk_in_pop_flag = USB_EP_DTOG_RX;
|
|
|
|
USB->CNTR = USB_CNTR_CTRM | USB_CNTR_RESETM;
|
|
USB->DADDR = USB_DADDR_EF;
|
|
}
|
|
|
|
// Main irq handler
|
|
void
|
|
USB_IRQHandler(void)
|
|
{
|
|
uint32_t istr = USB->ISTR;
|
|
if (istr & USB_ISTR_CTR) {
|
|
// Endpoint activity
|
|
uint32_t ep = istr & USB_ISTR_EP_ID, epr = USB_EPR[ep];
|
|
if (ep == USB_CDC_EP_BULK_OUT) {
|
|
USB_EPR[ep] = (calc_epr_bits(epr, USB_EP_CTR_RX | USB_EP_CTR_TX, 0)
|
|
| bulk_out_push_flag);
|
|
bulk_out_push_flag = 0;
|
|
usb_notify_bulk_out();
|
|
} else if (ep == USB_CDC_EP_BULK_IN) {
|
|
USB_EPR[ep] = (calc_epr_bits(epr, USB_EP_CTR_RX | USB_EP_CTR_TX, 0)
|
|
| bulk_in_pop_flag);
|
|
bulk_in_pop_flag = 0;
|
|
usb_notify_bulk_in();
|
|
} else if (ep == 0) {
|
|
USB_EPR[ep] = calc_epr_bits(epr, USB_EP_CTR_RX | USB_EP_CTR_TX, 0);
|
|
usb_notify_ep0();
|
|
if (epr & USB_EP_CTR_TX && set_address) {
|
|
// Apply address after last "in" message transmitted
|
|
USB->DADDR = set_address;
|
|
set_address = 0;
|
|
}
|
|
}
|
|
}
|
|
if (istr & USB_ISTR_RESET) {
|
|
// USB Reset
|
|
USB->ISTR = (uint16_t)~USB_ISTR_RESET;
|
|
usb_reset();
|
|
}
|
|
}
|
|
|
|
DECL_CONSTANT_STR("RESERVE_PINS_USB", "PA11,PA12");
|
|
|
|
// Initialize the usb controller
|
|
void
|
|
usb_init(void)
|
|
{
|
|
if (CONFIG_MACH_STM32F1) {
|
|
// Pull the D+ pin low briefly to signal a new connection
|
|
gpio_out_setup(GPIO('A', 12), 0);
|
|
udelay(5000);
|
|
gpio_in_setup(GPIO('A', 12), 0);
|
|
}
|
|
|
|
// Enable USB clock
|
|
enable_pclock(USB_BASE);
|
|
|
|
// Setup USB packet memory
|
|
btable_configure();
|
|
|
|
// Enable USB pullup
|
|
#ifdef USB_BCDR_DPPU
|
|
USB->BCDR = USB_BCDR_DPPU;
|
|
#endif
|
|
|
|
// Reset usb controller and enable interrupts
|
|
USB->CNTR = USB_CNTR_FRES;
|
|
USB->DADDR = 0;
|
|
USB->CNTR = USB_CNTR_RESETM;
|
|
USB->ISTR = 0;
|
|
armcm_enable_irq(USB_IRQHandler, USBx_IRQn, 1);
|
|
}
|
|
DECL_INIT(usb_init);
|