Kevin O'Connor c0014efc4a rp2040: Resynchronize with upstream Klipper code and support rp2350 chips
Synchronize with the latest Klipper code.  This pulls in the latest
lib/ files (needed to use the pico-sdk v2.0.0 version).  It updates to
latest can2040 code (needed for pico-sdk v2.0.0 support).  It
implements USB double buffering (as is now done in Klipper).  It adds
in support for additional UART pins (as is now done in Klipper).  It
adds support for rp2350 chips.

This replaces the execute in ram code previously implemented in
Katapult with the execute in ram code that is now standard in Klipper.

The CONFIG_RP2040_ADD_BOOT_SIGNATURE kconfig symbol was removed and
the build now always produces a katapult.withclear.uf2 file.

Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
2024-12-17 19:27:43 -05:00

1782 lines
92 KiB
C

// THIS HEADER FILE IS AUTOMATICALLY GENERATED -- DO NOT EDIT
/**
* Copyright (c) 2024 Raspberry Pi Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
// =============================================================================
// Register block : QMI
// Version : 1
// Bus type : apb
// Description : QSPI Memory Interface.
//
// Provides a memory-mapped interface to up to two
// SPI/DSPI/QSPI flash or PSRAM devices. Also provides a serial
// interface for programming and configuration of the external
// device.
// =============================================================================
#ifndef _HARDWARE_REGS_QMI_H
#define _HARDWARE_REGS_QMI_H
// =============================================================================
// Register : QMI_DIRECT_CSR
// Description : Control and status for direct serial mode
//
// Direct serial mode allows the processor to send and receive raw
// serial frames, for programming, configuration and control of
// the external memory devices. Only SPI mode 0 (CPOL=0 CPHA=0) is
// supported.
#define QMI_DIRECT_CSR_OFFSET _u(0x00000000)
#define QMI_DIRECT_CSR_BITS _u(0xffdf7ccf)
#define QMI_DIRECT_CSR_RESET _u(0x01800000)
// -----------------------------------------------------------------------------
// Field : QMI_DIRECT_CSR_RXDELAY
// Description : Delay the read data sample timing, in units of one half of a
// system clock cycle. (Not necessarily half of an SCK cycle.)
#define QMI_DIRECT_CSR_RXDELAY_RESET _u(0x0)
#define QMI_DIRECT_CSR_RXDELAY_BITS _u(0xc0000000)
#define QMI_DIRECT_CSR_RXDELAY_MSB _u(31)
#define QMI_DIRECT_CSR_RXDELAY_LSB _u(30)
#define QMI_DIRECT_CSR_RXDELAY_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_DIRECT_CSR_CLKDIV
// Description : Clock divisor for direct serial mode. Divisors of 1..255 are
// encoded directly, and the maximum divisor of 256 is encoded by
// a value of CLKDIV=0.
//
// The clock divisor can be changed on-the-fly by software,
// without halting or otherwise coordinating with the serial
// interface. The serial interface will sample the latest clock
// divisor each time it begins the transmission of a new byte.
#define QMI_DIRECT_CSR_CLKDIV_RESET _u(0x06)
#define QMI_DIRECT_CSR_CLKDIV_BITS _u(0x3fc00000)
#define QMI_DIRECT_CSR_CLKDIV_MSB _u(29)
#define QMI_DIRECT_CSR_CLKDIV_LSB _u(22)
#define QMI_DIRECT_CSR_CLKDIV_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_DIRECT_CSR_RXLEVEL
// Description : Current level of DIRECT_RX FIFO
#define QMI_DIRECT_CSR_RXLEVEL_RESET _u(0x0)
#define QMI_DIRECT_CSR_RXLEVEL_BITS _u(0x001c0000)
#define QMI_DIRECT_CSR_RXLEVEL_MSB _u(20)
#define QMI_DIRECT_CSR_RXLEVEL_LSB _u(18)
#define QMI_DIRECT_CSR_RXLEVEL_ACCESS "RO"
// -----------------------------------------------------------------------------
// Field : QMI_DIRECT_CSR_RXFULL
// Description : When 1, the DIRECT_RX FIFO is currently full. The serial
// interface will be stalled until data is popped; the interface
// will not begin a new serial frame when the DIRECT_TX FIFO is
// empty or the DIRECT_RX FIFO is full.
#define QMI_DIRECT_CSR_RXFULL_RESET _u(0x0)
#define QMI_DIRECT_CSR_RXFULL_BITS _u(0x00020000)
#define QMI_DIRECT_CSR_RXFULL_MSB _u(17)
#define QMI_DIRECT_CSR_RXFULL_LSB _u(17)
#define QMI_DIRECT_CSR_RXFULL_ACCESS "RO"
// -----------------------------------------------------------------------------
// Field : QMI_DIRECT_CSR_RXEMPTY
// Description : When 1, the DIRECT_RX FIFO is currently empty. If the processor
// attempts to read more data, the FIFO state is not affected, but
// the value returned to the processor is undefined.
#define QMI_DIRECT_CSR_RXEMPTY_RESET _u(0x0)
#define QMI_DIRECT_CSR_RXEMPTY_BITS _u(0x00010000)
#define QMI_DIRECT_CSR_RXEMPTY_MSB _u(16)
#define QMI_DIRECT_CSR_RXEMPTY_LSB _u(16)
#define QMI_DIRECT_CSR_RXEMPTY_ACCESS "RO"
// -----------------------------------------------------------------------------
// Field : QMI_DIRECT_CSR_TXLEVEL
// Description : Current level of DIRECT_TX FIFO
#define QMI_DIRECT_CSR_TXLEVEL_RESET _u(0x0)
#define QMI_DIRECT_CSR_TXLEVEL_BITS _u(0x00007000)
#define QMI_DIRECT_CSR_TXLEVEL_MSB _u(14)
#define QMI_DIRECT_CSR_TXLEVEL_LSB _u(12)
#define QMI_DIRECT_CSR_TXLEVEL_ACCESS "RO"
// -----------------------------------------------------------------------------
// Field : QMI_DIRECT_CSR_TXEMPTY
// Description : When 1, the DIRECT_TX FIFO is currently empty. Unless the
// processor pushes more data, transmission will stop and BUSY
// will go low once the current 8-bit serial frame completes.
#define QMI_DIRECT_CSR_TXEMPTY_RESET _u(0x0)
#define QMI_DIRECT_CSR_TXEMPTY_BITS _u(0x00000800)
#define QMI_DIRECT_CSR_TXEMPTY_MSB _u(11)
#define QMI_DIRECT_CSR_TXEMPTY_LSB _u(11)
#define QMI_DIRECT_CSR_TXEMPTY_ACCESS "RO"
// -----------------------------------------------------------------------------
// Field : QMI_DIRECT_CSR_TXFULL
// Description : When 1, the DIRECT_TX FIFO is currently full. If the processor
// tries to write more data, that data will be ignored.
#define QMI_DIRECT_CSR_TXFULL_RESET _u(0x0)
#define QMI_DIRECT_CSR_TXFULL_BITS _u(0x00000400)
#define QMI_DIRECT_CSR_TXFULL_MSB _u(10)
#define QMI_DIRECT_CSR_TXFULL_LSB _u(10)
#define QMI_DIRECT_CSR_TXFULL_ACCESS "RO"
// -----------------------------------------------------------------------------
// Field : QMI_DIRECT_CSR_AUTO_CS1N
// Description : When 1, automatically assert the CS1n chip select line whenever
// the BUSY flag is set.
#define QMI_DIRECT_CSR_AUTO_CS1N_RESET _u(0x0)
#define QMI_DIRECT_CSR_AUTO_CS1N_BITS _u(0x00000080)
#define QMI_DIRECT_CSR_AUTO_CS1N_MSB _u(7)
#define QMI_DIRECT_CSR_AUTO_CS1N_LSB _u(7)
#define QMI_DIRECT_CSR_AUTO_CS1N_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_DIRECT_CSR_AUTO_CS0N
// Description : When 1, automatically assert the CS0n chip select line whenever
// the BUSY flag is set.
#define QMI_DIRECT_CSR_AUTO_CS0N_RESET _u(0x0)
#define QMI_DIRECT_CSR_AUTO_CS0N_BITS _u(0x00000040)
#define QMI_DIRECT_CSR_AUTO_CS0N_MSB _u(6)
#define QMI_DIRECT_CSR_AUTO_CS0N_LSB _u(6)
#define QMI_DIRECT_CSR_AUTO_CS0N_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_DIRECT_CSR_ASSERT_CS1N
// Description : When 1, assert (i.e. drive low) the CS1n chip select line.
//
// Note that this applies even when DIRECT_CSR_EN is 0.
#define QMI_DIRECT_CSR_ASSERT_CS1N_RESET _u(0x0)
#define QMI_DIRECT_CSR_ASSERT_CS1N_BITS _u(0x00000008)
#define QMI_DIRECT_CSR_ASSERT_CS1N_MSB _u(3)
#define QMI_DIRECT_CSR_ASSERT_CS1N_LSB _u(3)
#define QMI_DIRECT_CSR_ASSERT_CS1N_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_DIRECT_CSR_ASSERT_CS0N
// Description : When 1, assert (i.e. drive low) the CS0n chip select line.
//
// Note that this applies even when DIRECT_CSR_EN is 0.
#define QMI_DIRECT_CSR_ASSERT_CS0N_RESET _u(0x0)
#define QMI_DIRECT_CSR_ASSERT_CS0N_BITS _u(0x00000004)
#define QMI_DIRECT_CSR_ASSERT_CS0N_MSB _u(2)
#define QMI_DIRECT_CSR_ASSERT_CS0N_LSB _u(2)
#define QMI_DIRECT_CSR_ASSERT_CS0N_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_DIRECT_CSR_BUSY
// Description : Direct mode busy flag. If 1, data is currently being shifted
// in/out (or would be if the interface were not stalled on the RX
// FIFO), and the chip select must not yet be deasserted.
//
// The busy flag will also be set to 1 if a memory-mapped transfer
// is still in progress when direct mode is enabled. Direct mode
// blocks new memory-mapped transfers, but can't halt a transfer
// that is already in progress. If there is a chance that memory-
// mapped transfers may be in progress, the busy flag should be
// polled for 0 before asserting the chip select.
//
// (In practice you will usually discover this timing condition
// through other means, because any subsequent memory-mapped
// transfers when direct mode is enabled will return bus errors,
// which are difficult to ignore.)
#define QMI_DIRECT_CSR_BUSY_RESET _u(0x0)
#define QMI_DIRECT_CSR_BUSY_BITS _u(0x00000002)
#define QMI_DIRECT_CSR_BUSY_MSB _u(1)
#define QMI_DIRECT_CSR_BUSY_LSB _u(1)
#define QMI_DIRECT_CSR_BUSY_ACCESS "RO"
// -----------------------------------------------------------------------------
// Field : QMI_DIRECT_CSR_EN
// Description : Enable direct mode.
//
// In direct mode, software controls the chip select lines, and
// can perform direct SPI transfers by pushing data to the
// DIRECT_TX FIFO, and popping the same amount of data from the
// DIRECT_RX FIFO.
//
// Memory-mapped accesses will generate bus errors when direct
// serial mode is enabled.
#define QMI_DIRECT_CSR_EN_RESET _u(0x0)
#define QMI_DIRECT_CSR_EN_BITS _u(0x00000001)
#define QMI_DIRECT_CSR_EN_MSB _u(0)
#define QMI_DIRECT_CSR_EN_LSB _u(0)
#define QMI_DIRECT_CSR_EN_ACCESS "RW"
// =============================================================================
// Register : QMI_DIRECT_TX
// Description : Transmit FIFO for direct mode
#define QMI_DIRECT_TX_OFFSET _u(0x00000004)
#define QMI_DIRECT_TX_BITS _u(0x001fffff)
#define QMI_DIRECT_TX_RESET _u(0x00000000)
// -----------------------------------------------------------------------------
// Field : QMI_DIRECT_TX_NOPUSH
// Description : Inhibit the RX FIFO push that would correspond to this TX FIFO
// entry.
//
// Useful to avoid garbage appearing in the RX FIFO when pushing
// the command at the beginning of a SPI transfer.
#define QMI_DIRECT_TX_NOPUSH_RESET _u(0x0)
#define QMI_DIRECT_TX_NOPUSH_BITS _u(0x00100000)
#define QMI_DIRECT_TX_NOPUSH_MSB _u(20)
#define QMI_DIRECT_TX_NOPUSH_LSB _u(20)
#define QMI_DIRECT_TX_NOPUSH_ACCESS "WF"
// -----------------------------------------------------------------------------
// Field : QMI_DIRECT_TX_OE
// Description : Output enable (active-high). For single width (SPI), this field
// is ignored, and SD0 is always set to output, with SD1 always
// set to input.
//
// For dual and quad width (DSPI/QSPI), this sets whether the
// relevant SDx pads are set to output whilst transferring this
// FIFO record. In this case the command/address should have OE
// set, and the data transfer should have OE set or clear
// depending on the direction of the transfer.
#define QMI_DIRECT_TX_OE_RESET _u(0x0)
#define QMI_DIRECT_TX_OE_BITS _u(0x00080000)
#define QMI_DIRECT_TX_OE_MSB _u(19)
#define QMI_DIRECT_TX_OE_LSB _u(19)
#define QMI_DIRECT_TX_OE_ACCESS "WF"
// -----------------------------------------------------------------------------
// Field : QMI_DIRECT_TX_DWIDTH
// Description : Data width. If 0, hardware will transmit the 8 LSBs of the
// DIRECT_TX DATA field, and return an 8-bit value in the 8 LSBs
// of DIRECT_RX. If 1, the full 16-bit width is used. 8-bit and
// 16-bit transfers can be mixed freely.
#define QMI_DIRECT_TX_DWIDTH_RESET _u(0x0)
#define QMI_DIRECT_TX_DWIDTH_BITS _u(0x00040000)
#define QMI_DIRECT_TX_DWIDTH_MSB _u(18)
#define QMI_DIRECT_TX_DWIDTH_LSB _u(18)
#define QMI_DIRECT_TX_DWIDTH_ACCESS "WF"
// -----------------------------------------------------------------------------
// Field : QMI_DIRECT_TX_IWIDTH
// Description : Configure whether this FIFO record is transferred with
// single/dual/quad interface width (0/1/2). Different widths can
// be mixed freely.
// 0x0 -> Single width
// 0x1 -> Dual width
// 0x2 -> Quad width
#define QMI_DIRECT_TX_IWIDTH_RESET _u(0x0)
#define QMI_DIRECT_TX_IWIDTH_BITS _u(0x00030000)
#define QMI_DIRECT_TX_IWIDTH_MSB _u(17)
#define QMI_DIRECT_TX_IWIDTH_LSB _u(16)
#define QMI_DIRECT_TX_IWIDTH_ACCESS "WF"
#define QMI_DIRECT_TX_IWIDTH_VALUE_S _u(0x0)
#define QMI_DIRECT_TX_IWIDTH_VALUE_D _u(0x1)
#define QMI_DIRECT_TX_IWIDTH_VALUE_Q _u(0x2)
// -----------------------------------------------------------------------------
// Field : QMI_DIRECT_TX_DATA
// Description : Data pushed here will be clocked out falling edges of SCK (or
// before the very first rising edge of SCK, if this is the first
// pulse). For each byte clocked out, the interface will
// simultaneously sample one byte, on rising edges of SCK, and
// push this to the DIRECT_RX FIFO.
//
// For 16-bit data, the least-significant byte is transmitted
// first.
#define QMI_DIRECT_TX_DATA_RESET _u(0x0000)
#define QMI_DIRECT_TX_DATA_BITS _u(0x0000ffff)
#define QMI_DIRECT_TX_DATA_MSB _u(15)
#define QMI_DIRECT_TX_DATA_LSB _u(0)
#define QMI_DIRECT_TX_DATA_ACCESS "WF"
// =============================================================================
// Register : QMI_DIRECT_RX
// Description : Receive FIFO for direct mode
// With each byte clocked out on the serial interface, one byte
// will simultaneously be clocked in, and will appear in this
// FIFO. The serial interface will stall when this FIFO is full,
// to avoid dropping data.
//
// When 16-bit data is pushed into the TX FIFO, the corresponding
// RX FIFO push will also contain 16 bits of data. The least-
// significant byte is the first one received.
#define QMI_DIRECT_RX_OFFSET _u(0x00000008)
#define QMI_DIRECT_RX_BITS _u(0x0000ffff)
#define QMI_DIRECT_RX_RESET _u(0x00000000)
#define QMI_DIRECT_RX_MSB _u(15)
#define QMI_DIRECT_RX_LSB _u(0)
#define QMI_DIRECT_RX_ACCESS "RF"
// =============================================================================
// Register : QMI_M0_TIMING
// Description : Timing configuration register for memory address window 0.
#define QMI_M0_TIMING_OFFSET _u(0x0000000c)
#define QMI_M0_TIMING_BITS _u(0xf3fff7ff)
#define QMI_M0_TIMING_RESET _u(0x40000004)
// -----------------------------------------------------------------------------
// Field : QMI_M0_TIMING_COOLDOWN
// Description : Chip select cooldown period. When a memory transfer finishes,
// the chip select remains asserted for 64 x COOLDOWN system clock
// cycles, plus half an SCK clock period (rounded up for odd SCK
// divisors). After this cooldown expires, the chip select is
// always deasserted to save power.
//
// If the next memory access arrives within the cooldown period,
// the QMI may be able to append more SCK cycles to the currently
// ongoing SPI transfer, rather than starting a new transfer. This
// reduces access latency and increases bus throughput.
//
// Specifically, the next access must be in the same direction
// (read/write), access the same memory window (chip select 0/1),
// and follow sequentially the address of the last transfer. If
// any of these are false, the new access will first deassert the
// chip select, then begin a new transfer.
//
// If COOLDOWN is 0, the address alignment configured by PAGEBREAK
// has been reached, or the total chip select assertion limit
// MAX_SELECT has been reached, the cooldown period is skipped,
// and the chip select will always be deasserted one half SCK
// period after the transfer finishes.
#define QMI_M0_TIMING_COOLDOWN_RESET _u(0x1)
#define QMI_M0_TIMING_COOLDOWN_BITS _u(0xc0000000)
#define QMI_M0_TIMING_COOLDOWN_MSB _u(31)
#define QMI_M0_TIMING_COOLDOWN_LSB _u(30)
#define QMI_M0_TIMING_COOLDOWN_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_M0_TIMING_PAGEBREAK
// Description : When page break is enabled, chip select will automatically
// deassert when crossing certain power-of-2-aligned address
// boundaries. The next access will always begin a new read/write
// SPI burst, even if the address of the next access follows in
// sequence with the last access before the page boundary.
//
// Some flash and PSRAM devices forbid crossing page boundaries
// with a single read/write transfer, or restrict the operating
// frequency for transfers that do cross page a boundary. This
// option allows the QMI to safely support those devices.
//
// This field has no effect when COOLDOWN is disabled.
// 0x0 -> No page boundary is enforced
// 0x1 -> Break bursts crossing a 256-byte page boundary
// 0x2 -> Break bursts crossing a 1024-byte quad-page boundary
// 0x3 -> Break bursts crossing a 4096-byte sector boundary
#define QMI_M0_TIMING_PAGEBREAK_RESET _u(0x0)
#define QMI_M0_TIMING_PAGEBREAK_BITS _u(0x30000000)
#define QMI_M0_TIMING_PAGEBREAK_MSB _u(29)
#define QMI_M0_TIMING_PAGEBREAK_LSB _u(28)
#define QMI_M0_TIMING_PAGEBREAK_ACCESS "RW"
#define QMI_M0_TIMING_PAGEBREAK_VALUE_NONE _u(0x0)
#define QMI_M0_TIMING_PAGEBREAK_VALUE_256 _u(0x1)
#define QMI_M0_TIMING_PAGEBREAK_VALUE_1024 _u(0x2)
#define QMI_M0_TIMING_PAGEBREAK_VALUE_4096 _u(0x3)
// -----------------------------------------------------------------------------
// Field : QMI_M0_TIMING_SELECT_SETUP
// Description : Add up to one additional system clock cycle of setup between
// chip select assertion and the first rising edge of SCK.
//
// The default setup time is one half SCK period, which is usually
// sufficient except for very high SCK frequencies with some flash
// devices.
#define QMI_M0_TIMING_SELECT_SETUP_RESET _u(0x0)
#define QMI_M0_TIMING_SELECT_SETUP_BITS _u(0x02000000)
#define QMI_M0_TIMING_SELECT_SETUP_MSB _u(25)
#define QMI_M0_TIMING_SELECT_SETUP_LSB _u(25)
#define QMI_M0_TIMING_SELECT_SETUP_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_M0_TIMING_SELECT_HOLD
// Description : Add up to three additional system clock cycles of active hold
// between the last falling edge of SCK and the deassertion of
// this window's chip select.
//
// The default hold time is one system clock cycle. Note that
// flash datasheets usually give chip select active hold time from
// the last *rising* edge of SCK, and so even zero hold from the
// last falling edge would be safe.
//
// Note that this is a minimum hold time guaranteed by the QMI:
// the actual chip select active hold may be slightly longer for
// read transfers with low clock divisors and/or high sample
// delays. Specifically, if the point two cycles after the last RX
// data sample is later than the last SCK falling edge, then the
// hold time is measured from *this* point.
//
// Note also that, in case the final SCK pulse is masked to save
// energy (true for non-DTR reads when COOLDOWN is disabled or
// PAGE_BREAK is reached), all of QMI's timing logic behaves as
// though the clock pulse were still present. The SELECT_HOLD time
// is applied from the point where the last SCK falling edge would
// be if the clock pulse were not masked.
#define QMI_M0_TIMING_SELECT_HOLD_RESET _u(0x0)
#define QMI_M0_TIMING_SELECT_HOLD_BITS _u(0x01800000)
#define QMI_M0_TIMING_SELECT_HOLD_MSB _u(24)
#define QMI_M0_TIMING_SELECT_HOLD_LSB _u(23)
#define QMI_M0_TIMING_SELECT_HOLD_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_M0_TIMING_MAX_SELECT
// Description : Enforce a maximum assertion duration for this window's chip
// select, in units of 64 system clock cycles. If 0, the QMI is
// permitted to keep the chip select asserted indefinitely when
// servicing sequential memory accesses (see COOLDOWN).
//
// This feature is required to meet timing constraints of PSRAM
// devices, which specify a maximum chip select assertion so they
// can perform DRAM refresh cycles. See also MIN_DESELECT, which
// can enforce a minimum deselect time.
//
// If a memory access is in progress at the time MAX_SELECT is
// reached, the QMI will wait for the access to complete before
// deasserting the chip select. This additional time must be
// accounted for to calculate a safe MAX_SELECT value. In the
// worst case, this may be a fully-formed serial transfer,
// including command prefix and address, with a data payload as
// large as one cache line.
#define QMI_M0_TIMING_MAX_SELECT_RESET _u(0x00)
#define QMI_M0_TIMING_MAX_SELECT_BITS _u(0x007e0000)
#define QMI_M0_TIMING_MAX_SELECT_MSB _u(22)
#define QMI_M0_TIMING_MAX_SELECT_LSB _u(17)
#define QMI_M0_TIMING_MAX_SELECT_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_M0_TIMING_MIN_DESELECT
// Description : After this window's chip select is deasserted, it remains
// deasserted for half an SCK cycle (rounded up to an integer
// number of system clock cycles), plus MIN_DESELECT additional
// system clock cycles, before the QMI reasserts either chip
// select pin.
//
// Nonzero values may be required for PSRAM devices which enforce
// a longer minimum CS deselect time, so that they can perform
// internal DRAM refresh cycles whilst deselected.
#define QMI_M0_TIMING_MIN_DESELECT_RESET _u(0x00)
#define QMI_M0_TIMING_MIN_DESELECT_BITS _u(0x0001f000)
#define QMI_M0_TIMING_MIN_DESELECT_MSB _u(16)
#define QMI_M0_TIMING_MIN_DESELECT_LSB _u(12)
#define QMI_M0_TIMING_MIN_DESELECT_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_M0_TIMING_RXDELAY
// Description : Delay the read data sample timing, in units of one half of a
// system clock cycle. (Not necessarily half of an SCK cycle.) An
// RXDELAY of 0 means the sample is captured at the SDI input
// registers simultaneously with the rising edge of SCK launched
// from the SCK output register.
//
// At higher SCK frequencies, RXDELAY may need to be increased to
// account for the round trip delay of the pads, and the clock-
// to-Q delay of the QSPI memory device.
#define QMI_M0_TIMING_RXDELAY_RESET _u(0x0)
#define QMI_M0_TIMING_RXDELAY_BITS _u(0x00000700)
#define QMI_M0_TIMING_RXDELAY_MSB _u(10)
#define QMI_M0_TIMING_RXDELAY_LSB _u(8)
#define QMI_M0_TIMING_RXDELAY_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_M0_TIMING_CLKDIV
// Description : Clock divisor. Odd and even divisors are supported. Defines the
// SCK clock period in units of 1 system clock cycle. Divisors
// 1..255 are encoded directly, and a divisor of 256 is encoded
// with a value of CLKDIV=0.
//
// The clock divisor can be changed on-the-fly, even when the QMI
// is currently accessing memory in this address window. All other
// parameters must only be changed when the QMI is idle.
//
// If software is increasing CLKDIV in anticipation of an increase
// in the system clock frequency, a dummy access to either memory
// window (and appropriate processor barriers/fences) must be
// inserted after the Mx_TIMING write to ensure the SCK divisor
// change is in effect _before_ the system clock is changed.
#define QMI_M0_TIMING_CLKDIV_RESET _u(0x04)
#define QMI_M0_TIMING_CLKDIV_BITS _u(0x000000ff)
#define QMI_M0_TIMING_CLKDIV_MSB _u(7)
#define QMI_M0_TIMING_CLKDIV_LSB _u(0)
#define QMI_M0_TIMING_CLKDIV_ACCESS "RW"
// =============================================================================
// Register : QMI_M0_RFMT
// Description : Read transfer format configuration for memory address window 0.
//
// Configure the bus width of each transfer phase individually,
// and configure the length or presence of the command prefix,
// command suffix and dummy/turnaround transfer phases. Only
// 24-bit addresses are supported.
//
// The reset value of the M0_RFMT register is configured to
// support a basic 03h serial read transfer with no additional
// configuration.
#define QMI_M0_RFMT_OFFSET _u(0x00000010)
#define QMI_M0_RFMT_BITS _u(0x1007d3ff)
#define QMI_M0_RFMT_RESET _u(0x00001000)
// -----------------------------------------------------------------------------
// Field : QMI_M0_RFMT_DTR
// Description : Enable double transfer rate (DTR) for read commands: address,
// suffix and read data phases are active on both edges of SCK.
// SDO data is launched centre-aligned on each SCK edge, and SDI
// data is captured on the SCK edge that follows its launch.
//
// DTR is implemented by halving the clock rate; SCK has a period
// of 2 x CLK_DIV throughout the transfer. The prefix and dummy
// phases are still single transfer rate.
//
// If the suffix is quad-width, it must be 0 or 8 bits in length,
// to ensure an even number of SCK edges.
#define QMI_M0_RFMT_DTR_RESET _u(0x0)
#define QMI_M0_RFMT_DTR_BITS _u(0x10000000)
#define QMI_M0_RFMT_DTR_MSB _u(28)
#define QMI_M0_RFMT_DTR_LSB _u(28)
#define QMI_M0_RFMT_DTR_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_M0_RFMT_DUMMY_LEN
// Description : Length of dummy phase between command suffix and data phase, in
// units of 4 bits. (i.e. 1 cycle for quad width, 2 for dual, 4
// for single)
// 0x0 -> No dummy phase
// 0x1 -> 4 dummy bits
// 0x2 -> 8 dummy bits
// 0x3 -> 12 dummy bits
// 0x4 -> 16 dummy bits
// 0x5 -> 20 dummy bits
// 0x6 -> 24 dummy bits
// 0x7 -> 28 dummy bits
#define QMI_M0_RFMT_DUMMY_LEN_RESET _u(0x0)
#define QMI_M0_RFMT_DUMMY_LEN_BITS _u(0x00070000)
#define QMI_M0_RFMT_DUMMY_LEN_MSB _u(18)
#define QMI_M0_RFMT_DUMMY_LEN_LSB _u(16)
#define QMI_M0_RFMT_DUMMY_LEN_ACCESS "RW"
#define QMI_M0_RFMT_DUMMY_LEN_VALUE_NONE _u(0x0)
#define QMI_M0_RFMT_DUMMY_LEN_VALUE_4 _u(0x1)
#define QMI_M0_RFMT_DUMMY_LEN_VALUE_8 _u(0x2)
#define QMI_M0_RFMT_DUMMY_LEN_VALUE_12 _u(0x3)
#define QMI_M0_RFMT_DUMMY_LEN_VALUE_16 _u(0x4)
#define QMI_M0_RFMT_DUMMY_LEN_VALUE_20 _u(0x5)
#define QMI_M0_RFMT_DUMMY_LEN_VALUE_24 _u(0x6)
#define QMI_M0_RFMT_DUMMY_LEN_VALUE_28 _u(0x7)
// -----------------------------------------------------------------------------
// Field : QMI_M0_RFMT_SUFFIX_LEN
// Description : Length of post-address command suffix, in units of 4 bits.
// (i.e. 1 cycle for quad width, 2 for dual, 4 for single)
//
// Only values of 0 and 8 bits are supported.
// 0x0 -> No suffix
// 0x2 -> 8-bit suffix
#define QMI_M0_RFMT_SUFFIX_LEN_RESET _u(0x0)
#define QMI_M0_RFMT_SUFFIX_LEN_BITS _u(0x0000c000)
#define QMI_M0_RFMT_SUFFIX_LEN_MSB _u(15)
#define QMI_M0_RFMT_SUFFIX_LEN_LSB _u(14)
#define QMI_M0_RFMT_SUFFIX_LEN_ACCESS "RW"
#define QMI_M0_RFMT_SUFFIX_LEN_VALUE_NONE _u(0x0)
#define QMI_M0_RFMT_SUFFIX_LEN_VALUE_8 _u(0x2)
// -----------------------------------------------------------------------------
// Field : QMI_M0_RFMT_PREFIX_LEN
// Description : Length of command prefix, in units of 8 bits. (i.e. 2 cycles
// for quad width, 4 for dual, 8 for single)
// 0x0 -> No prefix
// 0x1 -> 8-bit prefix
#define QMI_M0_RFMT_PREFIX_LEN_RESET _u(0x1)
#define QMI_M0_RFMT_PREFIX_LEN_BITS _u(0x00001000)
#define QMI_M0_RFMT_PREFIX_LEN_MSB _u(12)
#define QMI_M0_RFMT_PREFIX_LEN_LSB _u(12)
#define QMI_M0_RFMT_PREFIX_LEN_ACCESS "RW"
#define QMI_M0_RFMT_PREFIX_LEN_VALUE_NONE _u(0x0)
#define QMI_M0_RFMT_PREFIX_LEN_VALUE_8 _u(0x1)
// -----------------------------------------------------------------------------
// Field : QMI_M0_RFMT_DATA_WIDTH
// Description : The width used for the data transfer
// 0x0 -> Single width
// 0x1 -> Dual width
// 0x2 -> Quad width
#define QMI_M0_RFMT_DATA_WIDTH_RESET _u(0x0)
#define QMI_M0_RFMT_DATA_WIDTH_BITS _u(0x00000300)
#define QMI_M0_RFMT_DATA_WIDTH_MSB _u(9)
#define QMI_M0_RFMT_DATA_WIDTH_LSB _u(8)
#define QMI_M0_RFMT_DATA_WIDTH_ACCESS "RW"
#define QMI_M0_RFMT_DATA_WIDTH_VALUE_S _u(0x0)
#define QMI_M0_RFMT_DATA_WIDTH_VALUE_D _u(0x1)
#define QMI_M0_RFMT_DATA_WIDTH_VALUE_Q _u(0x2)
// -----------------------------------------------------------------------------
// Field : QMI_M0_RFMT_DUMMY_WIDTH
// Description : The width used for the dummy phase, if any.
//
// If width is single, SD0/MOSI is held asserted low during the
// dummy phase, and SD1...SD3 are tristated. If width is
// dual/quad, all IOs are tristated during the dummy phase.
// 0x0 -> Single width
// 0x1 -> Dual width
// 0x2 -> Quad width
#define QMI_M0_RFMT_DUMMY_WIDTH_RESET _u(0x0)
#define QMI_M0_RFMT_DUMMY_WIDTH_BITS _u(0x000000c0)
#define QMI_M0_RFMT_DUMMY_WIDTH_MSB _u(7)
#define QMI_M0_RFMT_DUMMY_WIDTH_LSB _u(6)
#define QMI_M0_RFMT_DUMMY_WIDTH_ACCESS "RW"
#define QMI_M0_RFMT_DUMMY_WIDTH_VALUE_S _u(0x0)
#define QMI_M0_RFMT_DUMMY_WIDTH_VALUE_D _u(0x1)
#define QMI_M0_RFMT_DUMMY_WIDTH_VALUE_Q _u(0x2)
// -----------------------------------------------------------------------------
// Field : QMI_M0_RFMT_SUFFIX_WIDTH
// Description : The width used for the post-address command suffix, if any
// 0x0 -> Single width
// 0x1 -> Dual width
// 0x2 -> Quad width
#define QMI_M0_RFMT_SUFFIX_WIDTH_RESET _u(0x0)
#define QMI_M0_RFMT_SUFFIX_WIDTH_BITS _u(0x00000030)
#define QMI_M0_RFMT_SUFFIX_WIDTH_MSB _u(5)
#define QMI_M0_RFMT_SUFFIX_WIDTH_LSB _u(4)
#define QMI_M0_RFMT_SUFFIX_WIDTH_ACCESS "RW"
#define QMI_M0_RFMT_SUFFIX_WIDTH_VALUE_S _u(0x0)
#define QMI_M0_RFMT_SUFFIX_WIDTH_VALUE_D _u(0x1)
#define QMI_M0_RFMT_SUFFIX_WIDTH_VALUE_Q _u(0x2)
// -----------------------------------------------------------------------------
// Field : QMI_M0_RFMT_ADDR_WIDTH
// Description : The transfer width used for the address. The address phase
// always transfers 24 bits in total.
// 0x0 -> Single width
// 0x1 -> Dual width
// 0x2 -> Quad width
#define QMI_M0_RFMT_ADDR_WIDTH_RESET _u(0x0)
#define QMI_M0_RFMT_ADDR_WIDTH_BITS _u(0x0000000c)
#define QMI_M0_RFMT_ADDR_WIDTH_MSB _u(3)
#define QMI_M0_RFMT_ADDR_WIDTH_LSB _u(2)
#define QMI_M0_RFMT_ADDR_WIDTH_ACCESS "RW"
#define QMI_M0_RFMT_ADDR_WIDTH_VALUE_S _u(0x0)
#define QMI_M0_RFMT_ADDR_WIDTH_VALUE_D _u(0x1)
#define QMI_M0_RFMT_ADDR_WIDTH_VALUE_Q _u(0x2)
// -----------------------------------------------------------------------------
// Field : QMI_M0_RFMT_PREFIX_WIDTH
// Description : The transfer width used for the command prefix, if any
// 0x0 -> Single width
// 0x1 -> Dual width
// 0x2 -> Quad width
#define QMI_M0_RFMT_PREFIX_WIDTH_RESET _u(0x0)
#define QMI_M0_RFMT_PREFIX_WIDTH_BITS _u(0x00000003)
#define QMI_M0_RFMT_PREFIX_WIDTH_MSB _u(1)
#define QMI_M0_RFMT_PREFIX_WIDTH_LSB _u(0)
#define QMI_M0_RFMT_PREFIX_WIDTH_ACCESS "RW"
#define QMI_M0_RFMT_PREFIX_WIDTH_VALUE_S _u(0x0)
#define QMI_M0_RFMT_PREFIX_WIDTH_VALUE_D _u(0x1)
#define QMI_M0_RFMT_PREFIX_WIDTH_VALUE_Q _u(0x2)
// =============================================================================
// Register : QMI_M0_RCMD
// Description : Command constants used for reads from memory address window 0.
//
// The reset value of the M0_RCMD register is configured to
// support a basic 03h serial read transfer with no additional
// configuration.
#define QMI_M0_RCMD_OFFSET _u(0x00000014)
#define QMI_M0_RCMD_BITS _u(0x0000ffff)
#define QMI_M0_RCMD_RESET _u(0x0000a003)
// -----------------------------------------------------------------------------
// Field : QMI_M0_RCMD_SUFFIX
// Description : The command suffix bits following the address, if
// Mx_RFMT_SUFFIX_LEN is nonzero.
#define QMI_M0_RCMD_SUFFIX_RESET _u(0xa0)
#define QMI_M0_RCMD_SUFFIX_BITS _u(0x0000ff00)
#define QMI_M0_RCMD_SUFFIX_MSB _u(15)
#define QMI_M0_RCMD_SUFFIX_LSB _u(8)
#define QMI_M0_RCMD_SUFFIX_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_M0_RCMD_PREFIX
// Description : The command prefix bits to prepend on each new transfer, if
// Mx_RFMT_PREFIX_LEN is nonzero.
#define QMI_M0_RCMD_PREFIX_RESET _u(0x03)
#define QMI_M0_RCMD_PREFIX_BITS _u(0x000000ff)
#define QMI_M0_RCMD_PREFIX_MSB _u(7)
#define QMI_M0_RCMD_PREFIX_LSB _u(0)
#define QMI_M0_RCMD_PREFIX_ACCESS "RW"
// =============================================================================
// Register : QMI_M0_WFMT
// Description : Write transfer format configuration for memory address window
// 0.
//
// Configure the bus width of each transfer phase individually,
// and configure the length or presence of the command prefix,
// command suffix and dummy/turnaround transfer phases. Only
// 24-bit addresses are supported.
//
// The reset value of the M0_WFMT register is configured to
// support a basic 02h serial write transfer. However, writes to
// this window must first be enabled via the XIP_CTRL_WRITABLE_M0
// bit, as XIP memory is read-only by default.
#define QMI_M0_WFMT_OFFSET _u(0x00000018)
#define QMI_M0_WFMT_BITS _u(0x1007d3ff)
#define QMI_M0_WFMT_RESET _u(0x00001000)
// -----------------------------------------------------------------------------
// Field : QMI_M0_WFMT_DTR
// Description : Enable double transfer rate (DTR) for write commands: address,
// suffix and write data phases are active on both edges of SCK.
// SDO data is launched centre-aligned on each SCK edge, and SDI
// data is captured on the SCK edge that follows its launch.
//
// DTR is implemented by halving the clock rate; SCK has a period
// of 2 x CLK_DIV throughout the transfer. The prefix and dummy
// phases are still single transfer rate.
//
// If the suffix is quad-width, it must be 0 or 8 bits in length,
// to ensure an even number of SCK edges.
#define QMI_M0_WFMT_DTR_RESET _u(0x0)
#define QMI_M0_WFMT_DTR_BITS _u(0x10000000)
#define QMI_M0_WFMT_DTR_MSB _u(28)
#define QMI_M0_WFMT_DTR_LSB _u(28)
#define QMI_M0_WFMT_DTR_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_M0_WFMT_DUMMY_LEN
// Description : Length of dummy phase between command suffix and data phase, in
// units of 4 bits. (i.e. 1 cycle for quad width, 2 for dual, 4
// for single)
// 0x0 -> No dummy phase
// 0x1 -> 4 dummy bits
// 0x2 -> 8 dummy bits
// 0x3 -> 12 dummy bits
// 0x4 -> 16 dummy bits
// 0x5 -> 20 dummy bits
// 0x6 -> 24 dummy bits
// 0x7 -> 28 dummy bits
#define QMI_M0_WFMT_DUMMY_LEN_RESET _u(0x0)
#define QMI_M0_WFMT_DUMMY_LEN_BITS _u(0x00070000)
#define QMI_M0_WFMT_DUMMY_LEN_MSB _u(18)
#define QMI_M0_WFMT_DUMMY_LEN_LSB _u(16)
#define QMI_M0_WFMT_DUMMY_LEN_ACCESS "RW"
#define QMI_M0_WFMT_DUMMY_LEN_VALUE_NONE _u(0x0)
#define QMI_M0_WFMT_DUMMY_LEN_VALUE_4 _u(0x1)
#define QMI_M0_WFMT_DUMMY_LEN_VALUE_8 _u(0x2)
#define QMI_M0_WFMT_DUMMY_LEN_VALUE_12 _u(0x3)
#define QMI_M0_WFMT_DUMMY_LEN_VALUE_16 _u(0x4)
#define QMI_M0_WFMT_DUMMY_LEN_VALUE_20 _u(0x5)
#define QMI_M0_WFMT_DUMMY_LEN_VALUE_24 _u(0x6)
#define QMI_M0_WFMT_DUMMY_LEN_VALUE_28 _u(0x7)
// -----------------------------------------------------------------------------
// Field : QMI_M0_WFMT_SUFFIX_LEN
// Description : Length of post-address command suffix, in units of 4 bits.
// (i.e. 1 cycle for quad width, 2 for dual, 4 for single)
//
// Only values of 0 and 8 bits are supported.
// 0x0 -> No suffix
// 0x2 -> 8-bit suffix
#define QMI_M0_WFMT_SUFFIX_LEN_RESET _u(0x0)
#define QMI_M0_WFMT_SUFFIX_LEN_BITS _u(0x0000c000)
#define QMI_M0_WFMT_SUFFIX_LEN_MSB _u(15)
#define QMI_M0_WFMT_SUFFIX_LEN_LSB _u(14)
#define QMI_M0_WFMT_SUFFIX_LEN_ACCESS "RW"
#define QMI_M0_WFMT_SUFFIX_LEN_VALUE_NONE _u(0x0)
#define QMI_M0_WFMT_SUFFIX_LEN_VALUE_8 _u(0x2)
// -----------------------------------------------------------------------------
// Field : QMI_M0_WFMT_PREFIX_LEN
// Description : Length of command prefix, in units of 8 bits. (i.e. 2 cycles
// for quad width, 4 for dual, 8 for single)
// 0x0 -> No prefix
// 0x1 -> 8-bit prefix
#define QMI_M0_WFMT_PREFIX_LEN_RESET _u(0x1)
#define QMI_M0_WFMT_PREFIX_LEN_BITS _u(0x00001000)
#define QMI_M0_WFMT_PREFIX_LEN_MSB _u(12)
#define QMI_M0_WFMT_PREFIX_LEN_LSB _u(12)
#define QMI_M0_WFMT_PREFIX_LEN_ACCESS "RW"
#define QMI_M0_WFMT_PREFIX_LEN_VALUE_NONE _u(0x0)
#define QMI_M0_WFMT_PREFIX_LEN_VALUE_8 _u(0x1)
// -----------------------------------------------------------------------------
// Field : QMI_M0_WFMT_DATA_WIDTH
// Description : The width used for the data transfer
// 0x0 -> Single width
// 0x1 -> Dual width
// 0x2 -> Quad width
#define QMI_M0_WFMT_DATA_WIDTH_RESET _u(0x0)
#define QMI_M0_WFMT_DATA_WIDTH_BITS _u(0x00000300)
#define QMI_M0_WFMT_DATA_WIDTH_MSB _u(9)
#define QMI_M0_WFMT_DATA_WIDTH_LSB _u(8)
#define QMI_M0_WFMT_DATA_WIDTH_ACCESS "RW"
#define QMI_M0_WFMT_DATA_WIDTH_VALUE_S _u(0x0)
#define QMI_M0_WFMT_DATA_WIDTH_VALUE_D _u(0x1)
#define QMI_M0_WFMT_DATA_WIDTH_VALUE_Q _u(0x2)
// -----------------------------------------------------------------------------
// Field : QMI_M0_WFMT_DUMMY_WIDTH
// Description : The width used for the dummy phase, if any.
//
// If width is single, SD0/MOSI is held asserted low during the
// dummy phase, and SD1...SD3 are tristated. If width is
// dual/quad, all IOs are tristated during the dummy phase.
// 0x0 -> Single width
// 0x1 -> Dual width
// 0x2 -> Quad width
#define QMI_M0_WFMT_DUMMY_WIDTH_RESET _u(0x0)
#define QMI_M0_WFMT_DUMMY_WIDTH_BITS _u(0x000000c0)
#define QMI_M0_WFMT_DUMMY_WIDTH_MSB _u(7)
#define QMI_M0_WFMT_DUMMY_WIDTH_LSB _u(6)
#define QMI_M0_WFMT_DUMMY_WIDTH_ACCESS "RW"
#define QMI_M0_WFMT_DUMMY_WIDTH_VALUE_S _u(0x0)
#define QMI_M0_WFMT_DUMMY_WIDTH_VALUE_D _u(0x1)
#define QMI_M0_WFMT_DUMMY_WIDTH_VALUE_Q _u(0x2)
// -----------------------------------------------------------------------------
// Field : QMI_M0_WFMT_SUFFIX_WIDTH
// Description : The width used for the post-address command suffix, if any
// 0x0 -> Single width
// 0x1 -> Dual width
// 0x2 -> Quad width
#define QMI_M0_WFMT_SUFFIX_WIDTH_RESET _u(0x0)
#define QMI_M0_WFMT_SUFFIX_WIDTH_BITS _u(0x00000030)
#define QMI_M0_WFMT_SUFFIX_WIDTH_MSB _u(5)
#define QMI_M0_WFMT_SUFFIX_WIDTH_LSB _u(4)
#define QMI_M0_WFMT_SUFFIX_WIDTH_ACCESS "RW"
#define QMI_M0_WFMT_SUFFIX_WIDTH_VALUE_S _u(0x0)
#define QMI_M0_WFMT_SUFFIX_WIDTH_VALUE_D _u(0x1)
#define QMI_M0_WFMT_SUFFIX_WIDTH_VALUE_Q _u(0x2)
// -----------------------------------------------------------------------------
// Field : QMI_M0_WFMT_ADDR_WIDTH
// Description : The transfer width used for the address. The address phase
// always transfers 24 bits in total.
// 0x0 -> Single width
// 0x1 -> Dual width
// 0x2 -> Quad width
#define QMI_M0_WFMT_ADDR_WIDTH_RESET _u(0x0)
#define QMI_M0_WFMT_ADDR_WIDTH_BITS _u(0x0000000c)
#define QMI_M0_WFMT_ADDR_WIDTH_MSB _u(3)
#define QMI_M0_WFMT_ADDR_WIDTH_LSB _u(2)
#define QMI_M0_WFMT_ADDR_WIDTH_ACCESS "RW"
#define QMI_M0_WFMT_ADDR_WIDTH_VALUE_S _u(0x0)
#define QMI_M0_WFMT_ADDR_WIDTH_VALUE_D _u(0x1)
#define QMI_M0_WFMT_ADDR_WIDTH_VALUE_Q _u(0x2)
// -----------------------------------------------------------------------------
// Field : QMI_M0_WFMT_PREFIX_WIDTH
// Description : The transfer width used for the command prefix, if any
// 0x0 -> Single width
// 0x1 -> Dual width
// 0x2 -> Quad width
#define QMI_M0_WFMT_PREFIX_WIDTH_RESET _u(0x0)
#define QMI_M0_WFMT_PREFIX_WIDTH_BITS _u(0x00000003)
#define QMI_M0_WFMT_PREFIX_WIDTH_MSB _u(1)
#define QMI_M0_WFMT_PREFIX_WIDTH_LSB _u(0)
#define QMI_M0_WFMT_PREFIX_WIDTH_ACCESS "RW"
#define QMI_M0_WFMT_PREFIX_WIDTH_VALUE_S _u(0x0)
#define QMI_M0_WFMT_PREFIX_WIDTH_VALUE_D _u(0x1)
#define QMI_M0_WFMT_PREFIX_WIDTH_VALUE_Q _u(0x2)
// =============================================================================
// Register : QMI_M0_WCMD
// Description : Command constants used for writes to memory address window 0.
//
// The reset value of the M0_WCMD register is configured to
// support a basic 02h serial write transfer with no additional
// configuration.
#define QMI_M0_WCMD_OFFSET _u(0x0000001c)
#define QMI_M0_WCMD_BITS _u(0x0000ffff)
#define QMI_M0_WCMD_RESET _u(0x0000a002)
// -----------------------------------------------------------------------------
// Field : QMI_M0_WCMD_SUFFIX
// Description : The command suffix bits following the address, if
// Mx_WFMT_SUFFIX_LEN is nonzero.
#define QMI_M0_WCMD_SUFFIX_RESET _u(0xa0)
#define QMI_M0_WCMD_SUFFIX_BITS _u(0x0000ff00)
#define QMI_M0_WCMD_SUFFIX_MSB _u(15)
#define QMI_M0_WCMD_SUFFIX_LSB _u(8)
#define QMI_M0_WCMD_SUFFIX_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_M0_WCMD_PREFIX
// Description : The command prefix bits to prepend on each new transfer, if
// Mx_WFMT_PREFIX_LEN is nonzero.
#define QMI_M0_WCMD_PREFIX_RESET _u(0x02)
#define QMI_M0_WCMD_PREFIX_BITS _u(0x000000ff)
#define QMI_M0_WCMD_PREFIX_MSB _u(7)
#define QMI_M0_WCMD_PREFIX_LSB _u(0)
#define QMI_M0_WCMD_PREFIX_ACCESS "RW"
// =============================================================================
// Register : QMI_M1_TIMING
// Description : Timing configuration register for memory address window 1.
#define QMI_M1_TIMING_OFFSET _u(0x00000020)
#define QMI_M1_TIMING_BITS _u(0xf3fff7ff)
#define QMI_M1_TIMING_RESET _u(0x40000004)
// -----------------------------------------------------------------------------
// Field : QMI_M1_TIMING_COOLDOWN
// Description : Chip select cooldown period. When a memory transfer finishes,
// the chip select remains asserted for 64 x COOLDOWN system clock
// cycles, plus half an SCK clock period (rounded up for odd SCK
// divisors). After this cooldown expires, the chip select is
// always deasserted to save power.
//
// If the next memory access arrives within the cooldown period,
// the QMI may be able to append more SCK cycles to the currently
// ongoing SPI transfer, rather than starting a new transfer. This
// reduces access latency and increases bus throughput.
//
// Specifically, the next access must be in the same direction
// (read/write), access the same memory window (chip select 0/1),
// and follow sequentially the address of the last transfer. If
// any of these are false, the new access will first deassert the
// chip select, then begin a new transfer.
//
// If COOLDOWN is 0, the address alignment configured by PAGEBREAK
// has been reached, or the total chip select assertion limit
// MAX_SELECT has been reached, the cooldown period is skipped,
// and the chip select will always be deasserted one half SCK
// period after the transfer finishes.
#define QMI_M1_TIMING_COOLDOWN_RESET _u(0x1)
#define QMI_M1_TIMING_COOLDOWN_BITS _u(0xc0000000)
#define QMI_M1_TIMING_COOLDOWN_MSB _u(31)
#define QMI_M1_TIMING_COOLDOWN_LSB _u(30)
#define QMI_M1_TIMING_COOLDOWN_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_M1_TIMING_PAGEBREAK
// Description : When page break is enabled, chip select will automatically
// deassert when crossing certain power-of-2-aligned address
// boundaries. The next access will always begin a new read/write
// SPI burst, even if the address of the next access follows in
// sequence with the last access before the page boundary.
//
// Some flash and PSRAM devices forbid crossing page boundaries
// with a single read/write transfer, or restrict the operating
// frequency for transfers that do cross page a boundary. This
// option allows the QMI to safely support those devices.
//
// This field has no effect when COOLDOWN is disabled.
// 0x0 -> No page boundary is enforced
// 0x1 -> Break bursts crossing a 256-byte page boundary
// 0x2 -> Break bursts crossing a 1024-byte quad-page boundary
// 0x3 -> Break bursts crossing a 4096-byte sector boundary
#define QMI_M1_TIMING_PAGEBREAK_RESET _u(0x0)
#define QMI_M1_TIMING_PAGEBREAK_BITS _u(0x30000000)
#define QMI_M1_TIMING_PAGEBREAK_MSB _u(29)
#define QMI_M1_TIMING_PAGEBREAK_LSB _u(28)
#define QMI_M1_TIMING_PAGEBREAK_ACCESS "RW"
#define QMI_M1_TIMING_PAGEBREAK_VALUE_NONE _u(0x0)
#define QMI_M1_TIMING_PAGEBREAK_VALUE_256 _u(0x1)
#define QMI_M1_TIMING_PAGEBREAK_VALUE_1024 _u(0x2)
#define QMI_M1_TIMING_PAGEBREAK_VALUE_4096 _u(0x3)
// -----------------------------------------------------------------------------
// Field : QMI_M1_TIMING_SELECT_SETUP
// Description : Add up to one additional system clock cycle of setup between
// chip select assertion and the first rising edge of SCK.
//
// The default setup time is one half SCK period, which is usually
// sufficient except for very high SCK frequencies with some flash
// devices.
#define QMI_M1_TIMING_SELECT_SETUP_RESET _u(0x0)
#define QMI_M1_TIMING_SELECT_SETUP_BITS _u(0x02000000)
#define QMI_M1_TIMING_SELECT_SETUP_MSB _u(25)
#define QMI_M1_TIMING_SELECT_SETUP_LSB _u(25)
#define QMI_M1_TIMING_SELECT_SETUP_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_M1_TIMING_SELECT_HOLD
// Description : Add up to three additional system clock cycles of active hold
// between the last falling edge of SCK and the deassertion of
// this window's chip select.
//
// The default hold time is one system clock cycle. Note that
// flash datasheets usually give chip select active hold time from
// the last *rising* edge of SCK, and so even zero hold from the
// last falling edge would be safe.
//
// Note that this is a minimum hold time guaranteed by the QMI:
// the actual chip select active hold may be slightly longer for
// read transfers with low clock divisors and/or high sample
// delays. Specifically, if the point two cycles after the last RX
// data sample is later than the last SCK falling edge, then the
// hold time is measured from *this* point.
//
// Note also that, in case the final SCK pulse is masked to save
// energy (true for non-DTR reads when COOLDOWN is disabled or
// PAGE_BREAK is reached), all of QMI's timing logic behaves as
// though the clock pulse were still present. The SELECT_HOLD time
// is applied from the point where the last SCK falling edge would
// be if the clock pulse were not masked.
#define QMI_M1_TIMING_SELECT_HOLD_RESET _u(0x0)
#define QMI_M1_TIMING_SELECT_HOLD_BITS _u(0x01800000)
#define QMI_M1_TIMING_SELECT_HOLD_MSB _u(24)
#define QMI_M1_TIMING_SELECT_HOLD_LSB _u(23)
#define QMI_M1_TIMING_SELECT_HOLD_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_M1_TIMING_MAX_SELECT
// Description : Enforce a maximum assertion duration for this window's chip
// select, in units of 64 system clock cycles. If 0, the QMI is
// permitted to keep the chip select asserted indefinitely when
// servicing sequential memory accesses (see COOLDOWN).
//
// This feature is required to meet timing constraints of PSRAM
// devices, which specify a maximum chip select assertion so they
// can perform DRAM refresh cycles. See also MIN_DESELECT, which
// can enforce a minimum deselect time.
//
// If a memory access is in progress at the time MAX_SELECT is
// reached, the QMI will wait for the access to complete before
// deasserting the chip select. This additional time must be
// accounted for to calculate a safe MAX_SELECT value. In the
// worst case, this may be a fully-formed serial transfer,
// including command prefix and address, with a data payload as
// large as one cache line.
#define QMI_M1_TIMING_MAX_SELECT_RESET _u(0x00)
#define QMI_M1_TIMING_MAX_SELECT_BITS _u(0x007e0000)
#define QMI_M1_TIMING_MAX_SELECT_MSB _u(22)
#define QMI_M1_TIMING_MAX_SELECT_LSB _u(17)
#define QMI_M1_TIMING_MAX_SELECT_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_M1_TIMING_MIN_DESELECT
// Description : After this window's chip select is deasserted, it remains
// deasserted for half an SCK cycle (rounded up to an integer
// number of system clock cycles), plus MIN_DESELECT additional
// system clock cycles, before the QMI reasserts either chip
// select pin.
//
// Nonzero values may be required for PSRAM devices which enforce
// a longer minimum CS deselect time, so that they can perform
// internal DRAM refresh cycles whilst deselected.
#define QMI_M1_TIMING_MIN_DESELECT_RESET _u(0x00)
#define QMI_M1_TIMING_MIN_DESELECT_BITS _u(0x0001f000)
#define QMI_M1_TIMING_MIN_DESELECT_MSB _u(16)
#define QMI_M1_TIMING_MIN_DESELECT_LSB _u(12)
#define QMI_M1_TIMING_MIN_DESELECT_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_M1_TIMING_RXDELAY
// Description : Delay the read data sample timing, in units of one half of a
// system clock cycle. (Not necessarily half of an SCK cycle.) An
// RXDELAY of 0 means the sample is captured at the SDI input
// registers simultaneously with the rising edge of SCK launched
// from the SCK output register.
//
// At higher SCK frequencies, RXDELAY may need to be increased to
// account for the round trip delay of the pads, and the clock-
// to-Q delay of the QSPI memory device.
#define QMI_M1_TIMING_RXDELAY_RESET _u(0x0)
#define QMI_M1_TIMING_RXDELAY_BITS _u(0x00000700)
#define QMI_M1_TIMING_RXDELAY_MSB _u(10)
#define QMI_M1_TIMING_RXDELAY_LSB _u(8)
#define QMI_M1_TIMING_RXDELAY_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_M1_TIMING_CLKDIV
// Description : Clock divisor. Odd and even divisors are supported. Defines the
// SCK clock period in units of 1 system clock cycle. Divisors
// 1..255 are encoded directly, and a divisor of 256 is encoded
// with a value of CLKDIV=0.
//
// The clock divisor can be changed on-the-fly, even when the QMI
// is currently accessing memory in this address window. All other
// parameters must only be changed when the QMI is idle.
//
// If software is increasing CLKDIV in anticipation of an increase
// in the system clock frequency, a dummy access to either memory
// window (and appropriate processor barriers/fences) must be
// inserted after the Mx_TIMING write to ensure the SCK divisor
// change is in effect _before_ the system clock is changed.
#define QMI_M1_TIMING_CLKDIV_RESET _u(0x04)
#define QMI_M1_TIMING_CLKDIV_BITS _u(0x000000ff)
#define QMI_M1_TIMING_CLKDIV_MSB _u(7)
#define QMI_M1_TIMING_CLKDIV_LSB _u(0)
#define QMI_M1_TIMING_CLKDIV_ACCESS "RW"
// =============================================================================
// Register : QMI_M1_RFMT
// Description : Read transfer format configuration for memory address window 1.
//
// Configure the bus width of each transfer phase individually,
// and configure the length or presence of the command prefix,
// command suffix and dummy/turnaround transfer phases. Only
// 24-bit addresses are supported.
//
// The reset value of the M1_RFMT register is configured to
// support a basic 03h serial read transfer with no additional
// configuration.
#define QMI_M1_RFMT_OFFSET _u(0x00000024)
#define QMI_M1_RFMT_BITS _u(0x1007d3ff)
#define QMI_M1_RFMT_RESET _u(0x00001000)
// -----------------------------------------------------------------------------
// Field : QMI_M1_RFMT_DTR
// Description : Enable double transfer rate (DTR) for read commands: address,
// suffix and read data phases are active on both edges of SCK.
// SDO data is launched centre-aligned on each SCK edge, and SDI
// data is captured on the SCK edge that follows its launch.
//
// DTR is implemented by halving the clock rate; SCK has a period
// of 2 x CLK_DIV throughout the transfer. The prefix and dummy
// phases are still single transfer rate.
//
// If the suffix is quad-width, it must be 0 or 8 bits in length,
// to ensure an even number of SCK edges.
#define QMI_M1_RFMT_DTR_RESET _u(0x0)
#define QMI_M1_RFMT_DTR_BITS _u(0x10000000)
#define QMI_M1_RFMT_DTR_MSB _u(28)
#define QMI_M1_RFMT_DTR_LSB _u(28)
#define QMI_M1_RFMT_DTR_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_M1_RFMT_DUMMY_LEN
// Description : Length of dummy phase between command suffix and data phase, in
// units of 4 bits. (i.e. 1 cycle for quad width, 2 for dual, 4
// for single)
// 0x0 -> No dummy phase
// 0x1 -> 4 dummy bits
// 0x2 -> 8 dummy bits
// 0x3 -> 12 dummy bits
// 0x4 -> 16 dummy bits
// 0x5 -> 20 dummy bits
// 0x6 -> 24 dummy bits
// 0x7 -> 28 dummy bits
#define QMI_M1_RFMT_DUMMY_LEN_RESET _u(0x0)
#define QMI_M1_RFMT_DUMMY_LEN_BITS _u(0x00070000)
#define QMI_M1_RFMT_DUMMY_LEN_MSB _u(18)
#define QMI_M1_RFMT_DUMMY_LEN_LSB _u(16)
#define QMI_M1_RFMT_DUMMY_LEN_ACCESS "RW"
#define QMI_M1_RFMT_DUMMY_LEN_VALUE_NONE _u(0x0)
#define QMI_M1_RFMT_DUMMY_LEN_VALUE_4 _u(0x1)
#define QMI_M1_RFMT_DUMMY_LEN_VALUE_8 _u(0x2)
#define QMI_M1_RFMT_DUMMY_LEN_VALUE_12 _u(0x3)
#define QMI_M1_RFMT_DUMMY_LEN_VALUE_16 _u(0x4)
#define QMI_M1_RFMT_DUMMY_LEN_VALUE_20 _u(0x5)
#define QMI_M1_RFMT_DUMMY_LEN_VALUE_24 _u(0x6)
#define QMI_M1_RFMT_DUMMY_LEN_VALUE_28 _u(0x7)
// -----------------------------------------------------------------------------
// Field : QMI_M1_RFMT_SUFFIX_LEN
// Description : Length of post-address command suffix, in units of 4 bits.
// (i.e. 1 cycle for quad width, 2 for dual, 4 for single)
//
// Only values of 0 and 8 bits are supported.
// 0x0 -> No suffix
// 0x2 -> 8-bit suffix
#define QMI_M1_RFMT_SUFFIX_LEN_RESET _u(0x0)
#define QMI_M1_RFMT_SUFFIX_LEN_BITS _u(0x0000c000)
#define QMI_M1_RFMT_SUFFIX_LEN_MSB _u(15)
#define QMI_M1_RFMT_SUFFIX_LEN_LSB _u(14)
#define QMI_M1_RFMT_SUFFIX_LEN_ACCESS "RW"
#define QMI_M1_RFMT_SUFFIX_LEN_VALUE_NONE _u(0x0)
#define QMI_M1_RFMT_SUFFIX_LEN_VALUE_8 _u(0x2)
// -----------------------------------------------------------------------------
// Field : QMI_M1_RFMT_PREFIX_LEN
// Description : Length of command prefix, in units of 8 bits. (i.e. 2 cycles
// for quad width, 4 for dual, 8 for single)
// 0x0 -> No prefix
// 0x1 -> 8-bit prefix
#define QMI_M1_RFMT_PREFIX_LEN_RESET _u(0x1)
#define QMI_M1_RFMT_PREFIX_LEN_BITS _u(0x00001000)
#define QMI_M1_RFMT_PREFIX_LEN_MSB _u(12)
#define QMI_M1_RFMT_PREFIX_LEN_LSB _u(12)
#define QMI_M1_RFMT_PREFIX_LEN_ACCESS "RW"
#define QMI_M1_RFMT_PREFIX_LEN_VALUE_NONE _u(0x0)
#define QMI_M1_RFMT_PREFIX_LEN_VALUE_8 _u(0x1)
// -----------------------------------------------------------------------------
// Field : QMI_M1_RFMT_DATA_WIDTH
// Description : The width used for the data transfer
// 0x0 -> Single width
// 0x1 -> Dual width
// 0x2 -> Quad width
#define QMI_M1_RFMT_DATA_WIDTH_RESET _u(0x0)
#define QMI_M1_RFMT_DATA_WIDTH_BITS _u(0x00000300)
#define QMI_M1_RFMT_DATA_WIDTH_MSB _u(9)
#define QMI_M1_RFMT_DATA_WIDTH_LSB _u(8)
#define QMI_M1_RFMT_DATA_WIDTH_ACCESS "RW"
#define QMI_M1_RFMT_DATA_WIDTH_VALUE_S _u(0x0)
#define QMI_M1_RFMT_DATA_WIDTH_VALUE_D _u(0x1)
#define QMI_M1_RFMT_DATA_WIDTH_VALUE_Q _u(0x2)
// -----------------------------------------------------------------------------
// Field : QMI_M1_RFMT_DUMMY_WIDTH
// Description : The width used for the dummy phase, if any.
//
// If width is single, SD0/MOSI is held asserted low during the
// dummy phase, and SD1...SD3 are tristated. If width is
// dual/quad, all IOs are tristated during the dummy phase.
// 0x0 -> Single width
// 0x1 -> Dual width
// 0x2 -> Quad width
#define QMI_M1_RFMT_DUMMY_WIDTH_RESET _u(0x0)
#define QMI_M1_RFMT_DUMMY_WIDTH_BITS _u(0x000000c0)
#define QMI_M1_RFMT_DUMMY_WIDTH_MSB _u(7)
#define QMI_M1_RFMT_DUMMY_WIDTH_LSB _u(6)
#define QMI_M1_RFMT_DUMMY_WIDTH_ACCESS "RW"
#define QMI_M1_RFMT_DUMMY_WIDTH_VALUE_S _u(0x0)
#define QMI_M1_RFMT_DUMMY_WIDTH_VALUE_D _u(0x1)
#define QMI_M1_RFMT_DUMMY_WIDTH_VALUE_Q _u(0x2)
// -----------------------------------------------------------------------------
// Field : QMI_M1_RFMT_SUFFIX_WIDTH
// Description : The width used for the post-address command suffix, if any
// 0x0 -> Single width
// 0x1 -> Dual width
// 0x2 -> Quad width
#define QMI_M1_RFMT_SUFFIX_WIDTH_RESET _u(0x0)
#define QMI_M1_RFMT_SUFFIX_WIDTH_BITS _u(0x00000030)
#define QMI_M1_RFMT_SUFFIX_WIDTH_MSB _u(5)
#define QMI_M1_RFMT_SUFFIX_WIDTH_LSB _u(4)
#define QMI_M1_RFMT_SUFFIX_WIDTH_ACCESS "RW"
#define QMI_M1_RFMT_SUFFIX_WIDTH_VALUE_S _u(0x0)
#define QMI_M1_RFMT_SUFFIX_WIDTH_VALUE_D _u(0x1)
#define QMI_M1_RFMT_SUFFIX_WIDTH_VALUE_Q _u(0x2)
// -----------------------------------------------------------------------------
// Field : QMI_M1_RFMT_ADDR_WIDTH
// Description : The transfer width used for the address. The address phase
// always transfers 24 bits in total.
// 0x0 -> Single width
// 0x1 -> Dual width
// 0x2 -> Quad width
#define QMI_M1_RFMT_ADDR_WIDTH_RESET _u(0x0)
#define QMI_M1_RFMT_ADDR_WIDTH_BITS _u(0x0000000c)
#define QMI_M1_RFMT_ADDR_WIDTH_MSB _u(3)
#define QMI_M1_RFMT_ADDR_WIDTH_LSB _u(2)
#define QMI_M1_RFMT_ADDR_WIDTH_ACCESS "RW"
#define QMI_M1_RFMT_ADDR_WIDTH_VALUE_S _u(0x0)
#define QMI_M1_RFMT_ADDR_WIDTH_VALUE_D _u(0x1)
#define QMI_M1_RFMT_ADDR_WIDTH_VALUE_Q _u(0x2)
// -----------------------------------------------------------------------------
// Field : QMI_M1_RFMT_PREFIX_WIDTH
// Description : The transfer width used for the command prefix, if any
// 0x0 -> Single width
// 0x1 -> Dual width
// 0x2 -> Quad width
#define QMI_M1_RFMT_PREFIX_WIDTH_RESET _u(0x0)
#define QMI_M1_RFMT_PREFIX_WIDTH_BITS _u(0x00000003)
#define QMI_M1_RFMT_PREFIX_WIDTH_MSB _u(1)
#define QMI_M1_RFMT_PREFIX_WIDTH_LSB _u(0)
#define QMI_M1_RFMT_PREFIX_WIDTH_ACCESS "RW"
#define QMI_M1_RFMT_PREFIX_WIDTH_VALUE_S _u(0x0)
#define QMI_M1_RFMT_PREFIX_WIDTH_VALUE_D _u(0x1)
#define QMI_M1_RFMT_PREFIX_WIDTH_VALUE_Q _u(0x2)
// =============================================================================
// Register : QMI_M1_RCMD
// Description : Command constants used for reads from memory address window 1.
//
// The reset value of the M1_RCMD register is configured to
// support a basic 03h serial read transfer with no additional
// configuration.
#define QMI_M1_RCMD_OFFSET _u(0x00000028)
#define QMI_M1_RCMD_BITS _u(0x0000ffff)
#define QMI_M1_RCMD_RESET _u(0x0000a003)
// -----------------------------------------------------------------------------
// Field : QMI_M1_RCMD_SUFFIX
// Description : The command suffix bits following the address, if
// Mx_RFMT_SUFFIX_LEN is nonzero.
#define QMI_M1_RCMD_SUFFIX_RESET _u(0xa0)
#define QMI_M1_RCMD_SUFFIX_BITS _u(0x0000ff00)
#define QMI_M1_RCMD_SUFFIX_MSB _u(15)
#define QMI_M1_RCMD_SUFFIX_LSB _u(8)
#define QMI_M1_RCMD_SUFFIX_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_M1_RCMD_PREFIX
// Description : The command prefix bits to prepend on each new transfer, if
// Mx_RFMT_PREFIX_LEN is nonzero.
#define QMI_M1_RCMD_PREFIX_RESET _u(0x03)
#define QMI_M1_RCMD_PREFIX_BITS _u(0x000000ff)
#define QMI_M1_RCMD_PREFIX_MSB _u(7)
#define QMI_M1_RCMD_PREFIX_LSB _u(0)
#define QMI_M1_RCMD_PREFIX_ACCESS "RW"
// =============================================================================
// Register : QMI_M1_WFMT
// Description : Write transfer format configuration for memory address window
// 1.
//
// Configure the bus width of each transfer phase individually,
// and configure the length or presence of the command prefix,
// command suffix and dummy/turnaround transfer phases. Only
// 24-bit addresses are supported.
//
// The reset value of the M1_WFMT register is configured to
// support a basic 02h serial write transfer. However, writes to
// this window must first be enabled via the XIP_CTRL_WRITABLE_M1
// bit, as XIP memory is read-only by default.
#define QMI_M1_WFMT_OFFSET _u(0x0000002c)
#define QMI_M1_WFMT_BITS _u(0x1007d3ff)
#define QMI_M1_WFMT_RESET _u(0x00001000)
// -----------------------------------------------------------------------------
// Field : QMI_M1_WFMT_DTR
// Description : Enable double transfer rate (DTR) for write commands: address,
// suffix and write data phases are active on both edges of SCK.
// SDO data is launched centre-aligned on each SCK edge, and SDI
// data is captured on the SCK edge that follows its launch.
//
// DTR is implemented by halving the clock rate; SCK has a period
// of 2 x CLK_DIV throughout the transfer. The prefix and dummy
// phases are still single transfer rate.
//
// If the suffix is quad-width, it must be 0 or 8 bits in length,
// to ensure an even number of SCK edges.
#define QMI_M1_WFMT_DTR_RESET _u(0x0)
#define QMI_M1_WFMT_DTR_BITS _u(0x10000000)
#define QMI_M1_WFMT_DTR_MSB _u(28)
#define QMI_M1_WFMT_DTR_LSB _u(28)
#define QMI_M1_WFMT_DTR_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_M1_WFMT_DUMMY_LEN
// Description : Length of dummy phase between command suffix and data phase, in
// units of 4 bits. (i.e. 1 cycle for quad width, 2 for dual, 4
// for single)
// 0x0 -> No dummy phase
// 0x1 -> 4 dummy bits
// 0x2 -> 8 dummy bits
// 0x3 -> 12 dummy bits
// 0x4 -> 16 dummy bits
// 0x5 -> 20 dummy bits
// 0x6 -> 24 dummy bits
// 0x7 -> 28 dummy bits
#define QMI_M1_WFMT_DUMMY_LEN_RESET _u(0x0)
#define QMI_M1_WFMT_DUMMY_LEN_BITS _u(0x00070000)
#define QMI_M1_WFMT_DUMMY_LEN_MSB _u(18)
#define QMI_M1_WFMT_DUMMY_LEN_LSB _u(16)
#define QMI_M1_WFMT_DUMMY_LEN_ACCESS "RW"
#define QMI_M1_WFMT_DUMMY_LEN_VALUE_NONE _u(0x0)
#define QMI_M1_WFMT_DUMMY_LEN_VALUE_4 _u(0x1)
#define QMI_M1_WFMT_DUMMY_LEN_VALUE_8 _u(0x2)
#define QMI_M1_WFMT_DUMMY_LEN_VALUE_12 _u(0x3)
#define QMI_M1_WFMT_DUMMY_LEN_VALUE_16 _u(0x4)
#define QMI_M1_WFMT_DUMMY_LEN_VALUE_20 _u(0x5)
#define QMI_M1_WFMT_DUMMY_LEN_VALUE_24 _u(0x6)
#define QMI_M1_WFMT_DUMMY_LEN_VALUE_28 _u(0x7)
// -----------------------------------------------------------------------------
// Field : QMI_M1_WFMT_SUFFIX_LEN
// Description : Length of post-address command suffix, in units of 4 bits.
// (i.e. 1 cycle for quad width, 2 for dual, 4 for single)
//
// Only values of 0 and 8 bits are supported.
// 0x0 -> No suffix
// 0x2 -> 8-bit suffix
#define QMI_M1_WFMT_SUFFIX_LEN_RESET _u(0x0)
#define QMI_M1_WFMT_SUFFIX_LEN_BITS _u(0x0000c000)
#define QMI_M1_WFMT_SUFFIX_LEN_MSB _u(15)
#define QMI_M1_WFMT_SUFFIX_LEN_LSB _u(14)
#define QMI_M1_WFMT_SUFFIX_LEN_ACCESS "RW"
#define QMI_M1_WFMT_SUFFIX_LEN_VALUE_NONE _u(0x0)
#define QMI_M1_WFMT_SUFFIX_LEN_VALUE_8 _u(0x2)
// -----------------------------------------------------------------------------
// Field : QMI_M1_WFMT_PREFIX_LEN
// Description : Length of command prefix, in units of 8 bits. (i.e. 2 cycles
// for quad width, 4 for dual, 8 for single)
// 0x0 -> No prefix
// 0x1 -> 8-bit prefix
#define QMI_M1_WFMT_PREFIX_LEN_RESET _u(0x1)
#define QMI_M1_WFMT_PREFIX_LEN_BITS _u(0x00001000)
#define QMI_M1_WFMT_PREFIX_LEN_MSB _u(12)
#define QMI_M1_WFMT_PREFIX_LEN_LSB _u(12)
#define QMI_M1_WFMT_PREFIX_LEN_ACCESS "RW"
#define QMI_M1_WFMT_PREFIX_LEN_VALUE_NONE _u(0x0)
#define QMI_M1_WFMT_PREFIX_LEN_VALUE_8 _u(0x1)
// -----------------------------------------------------------------------------
// Field : QMI_M1_WFMT_DATA_WIDTH
// Description : The width used for the data transfer
// 0x0 -> Single width
// 0x1 -> Dual width
// 0x2 -> Quad width
#define QMI_M1_WFMT_DATA_WIDTH_RESET _u(0x0)
#define QMI_M1_WFMT_DATA_WIDTH_BITS _u(0x00000300)
#define QMI_M1_WFMT_DATA_WIDTH_MSB _u(9)
#define QMI_M1_WFMT_DATA_WIDTH_LSB _u(8)
#define QMI_M1_WFMT_DATA_WIDTH_ACCESS "RW"
#define QMI_M1_WFMT_DATA_WIDTH_VALUE_S _u(0x0)
#define QMI_M1_WFMT_DATA_WIDTH_VALUE_D _u(0x1)
#define QMI_M1_WFMT_DATA_WIDTH_VALUE_Q _u(0x2)
// -----------------------------------------------------------------------------
// Field : QMI_M1_WFMT_DUMMY_WIDTH
// Description : The width used for the dummy phase, if any.
//
// If width is single, SD0/MOSI is held asserted low during the
// dummy phase, and SD1...SD3 are tristated. If width is
// dual/quad, all IOs are tristated during the dummy phase.
// 0x0 -> Single width
// 0x1 -> Dual width
// 0x2 -> Quad width
#define QMI_M1_WFMT_DUMMY_WIDTH_RESET _u(0x0)
#define QMI_M1_WFMT_DUMMY_WIDTH_BITS _u(0x000000c0)
#define QMI_M1_WFMT_DUMMY_WIDTH_MSB _u(7)
#define QMI_M1_WFMT_DUMMY_WIDTH_LSB _u(6)
#define QMI_M1_WFMT_DUMMY_WIDTH_ACCESS "RW"
#define QMI_M1_WFMT_DUMMY_WIDTH_VALUE_S _u(0x0)
#define QMI_M1_WFMT_DUMMY_WIDTH_VALUE_D _u(0x1)
#define QMI_M1_WFMT_DUMMY_WIDTH_VALUE_Q _u(0x2)
// -----------------------------------------------------------------------------
// Field : QMI_M1_WFMT_SUFFIX_WIDTH
// Description : The width used for the post-address command suffix, if any
// 0x0 -> Single width
// 0x1 -> Dual width
// 0x2 -> Quad width
#define QMI_M1_WFMT_SUFFIX_WIDTH_RESET _u(0x0)
#define QMI_M1_WFMT_SUFFIX_WIDTH_BITS _u(0x00000030)
#define QMI_M1_WFMT_SUFFIX_WIDTH_MSB _u(5)
#define QMI_M1_WFMT_SUFFIX_WIDTH_LSB _u(4)
#define QMI_M1_WFMT_SUFFIX_WIDTH_ACCESS "RW"
#define QMI_M1_WFMT_SUFFIX_WIDTH_VALUE_S _u(0x0)
#define QMI_M1_WFMT_SUFFIX_WIDTH_VALUE_D _u(0x1)
#define QMI_M1_WFMT_SUFFIX_WIDTH_VALUE_Q _u(0x2)
// -----------------------------------------------------------------------------
// Field : QMI_M1_WFMT_ADDR_WIDTH
// Description : The transfer width used for the address. The address phase
// always transfers 24 bits in total.
// 0x0 -> Single width
// 0x1 -> Dual width
// 0x2 -> Quad width
#define QMI_M1_WFMT_ADDR_WIDTH_RESET _u(0x0)
#define QMI_M1_WFMT_ADDR_WIDTH_BITS _u(0x0000000c)
#define QMI_M1_WFMT_ADDR_WIDTH_MSB _u(3)
#define QMI_M1_WFMT_ADDR_WIDTH_LSB _u(2)
#define QMI_M1_WFMT_ADDR_WIDTH_ACCESS "RW"
#define QMI_M1_WFMT_ADDR_WIDTH_VALUE_S _u(0x0)
#define QMI_M1_WFMT_ADDR_WIDTH_VALUE_D _u(0x1)
#define QMI_M1_WFMT_ADDR_WIDTH_VALUE_Q _u(0x2)
// -----------------------------------------------------------------------------
// Field : QMI_M1_WFMT_PREFIX_WIDTH
// Description : The transfer width used for the command prefix, if any
// 0x0 -> Single width
// 0x1 -> Dual width
// 0x2 -> Quad width
#define QMI_M1_WFMT_PREFIX_WIDTH_RESET _u(0x0)
#define QMI_M1_WFMT_PREFIX_WIDTH_BITS _u(0x00000003)
#define QMI_M1_WFMT_PREFIX_WIDTH_MSB _u(1)
#define QMI_M1_WFMT_PREFIX_WIDTH_LSB _u(0)
#define QMI_M1_WFMT_PREFIX_WIDTH_ACCESS "RW"
#define QMI_M1_WFMT_PREFIX_WIDTH_VALUE_S _u(0x0)
#define QMI_M1_WFMT_PREFIX_WIDTH_VALUE_D _u(0x1)
#define QMI_M1_WFMT_PREFIX_WIDTH_VALUE_Q _u(0x2)
// =============================================================================
// Register : QMI_M1_WCMD
// Description : Command constants used for writes to memory address window 1.
//
// The reset value of the M1_WCMD register is configured to
// support a basic 02h serial write transfer with no additional
// configuration.
#define QMI_M1_WCMD_OFFSET _u(0x00000030)
#define QMI_M1_WCMD_BITS _u(0x0000ffff)
#define QMI_M1_WCMD_RESET _u(0x0000a002)
// -----------------------------------------------------------------------------
// Field : QMI_M1_WCMD_SUFFIX
// Description : The command suffix bits following the address, if
// Mx_WFMT_SUFFIX_LEN is nonzero.
#define QMI_M1_WCMD_SUFFIX_RESET _u(0xa0)
#define QMI_M1_WCMD_SUFFIX_BITS _u(0x0000ff00)
#define QMI_M1_WCMD_SUFFIX_MSB _u(15)
#define QMI_M1_WCMD_SUFFIX_LSB _u(8)
#define QMI_M1_WCMD_SUFFIX_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_M1_WCMD_PREFIX
// Description : The command prefix bits to prepend on each new transfer, if
// Mx_WFMT_PREFIX_LEN is nonzero.
#define QMI_M1_WCMD_PREFIX_RESET _u(0x02)
#define QMI_M1_WCMD_PREFIX_BITS _u(0x000000ff)
#define QMI_M1_WCMD_PREFIX_MSB _u(7)
#define QMI_M1_WCMD_PREFIX_LSB _u(0)
#define QMI_M1_WCMD_PREFIX_ACCESS "RW"
// =============================================================================
// Register : QMI_ATRANS0
// Description : Configure address translation for XIP virtual addresses
// 0x000000 through 0x3fffff (a 4 MiB window starting at +0 MiB).
//
// Address translation allows a program image to be executed in
// place at multiple physical flash addresses (for example, a
// double-buffered flash image for over-the-air updates), without
// the overhead of position-independent code.
//
// At reset, the address translation registers are initialised to
// an identity mapping, so that they can be ignored if address
// translation is not required.
//
// Note that the XIP cache is fully virtually addressed, so a
// cache flush is required after changing the address translation.
#define QMI_ATRANS0_OFFSET _u(0x00000034)
#define QMI_ATRANS0_BITS _u(0x07ff0fff)
#define QMI_ATRANS0_RESET _u(0x04000000)
// -----------------------------------------------------------------------------
// Field : QMI_ATRANS0_SIZE
// Description : Translation aperture size for this virtual address range, in
// units of 4 kiB (one flash sector).
//
// Bits 21:12 of the virtual address are compared to SIZE. Offsets
// greater than SIZE return a bus error, and do not cause a QSPI
// access.
#define QMI_ATRANS0_SIZE_RESET _u(0x400)
#define QMI_ATRANS0_SIZE_BITS _u(0x07ff0000)
#define QMI_ATRANS0_SIZE_MSB _u(26)
#define QMI_ATRANS0_SIZE_LSB _u(16)
#define QMI_ATRANS0_SIZE_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_ATRANS0_BASE
// Description : Physical address base for this virtual address range, in units
// of 4 kiB (one flash sector).
//
// Taking a 24-bit virtual address, firstly bits 23:22 (the two
// MSBs) are masked to zero, and then BASE is added to bits 23:12
// (the upper 12 bits) to form the physical address. Translation
// wraps on a 16 MiB boundary.
#define QMI_ATRANS0_BASE_RESET _u(0x000)
#define QMI_ATRANS0_BASE_BITS _u(0x00000fff)
#define QMI_ATRANS0_BASE_MSB _u(11)
#define QMI_ATRANS0_BASE_LSB _u(0)
#define QMI_ATRANS0_BASE_ACCESS "RW"
// =============================================================================
// Register : QMI_ATRANS1
// Description : Configure address translation for XIP virtual addresses
// 0x400000 through 0x7fffff (a 4 MiB window starting at +4 MiB).
//
// Address translation allows a program image to be executed in
// place at multiple physical flash addresses (for example, a
// double-buffered flash image for over-the-air updates), without
// the overhead of position-independent code.
//
// At reset, the address translation registers are initialised to
// an identity mapping, so that they can be ignored if address
// translation is not required.
//
// Note that the XIP cache is fully virtually addressed, so a
// cache flush is required after changing the address translation.
#define QMI_ATRANS1_OFFSET _u(0x00000038)
#define QMI_ATRANS1_BITS _u(0x07ff0fff)
#define QMI_ATRANS1_RESET _u(0x04000400)
// -----------------------------------------------------------------------------
// Field : QMI_ATRANS1_SIZE
// Description : Translation aperture size for this virtual address range, in
// units of 4 kiB (one flash sector).
//
// Bits 21:12 of the virtual address are compared to SIZE. Offsets
// greater than SIZE return a bus error, and do not cause a QSPI
// access.
#define QMI_ATRANS1_SIZE_RESET _u(0x400)
#define QMI_ATRANS1_SIZE_BITS _u(0x07ff0000)
#define QMI_ATRANS1_SIZE_MSB _u(26)
#define QMI_ATRANS1_SIZE_LSB _u(16)
#define QMI_ATRANS1_SIZE_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_ATRANS1_BASE
// Description : Physical address base for this virtual address range, in units
// of 4 kiB (one flash sector).
//
// Taking a 24-bit virtual address, firstly bits 23:22 (the two
// MSBs) are masked to zero, and then BASE is added to bits 23:12
// (the upper 12 bits) to form the physical address. Translation
// wraps on a 16 MiB boundary.
#define QMI_ATRANS1_BASE_RESET _u(0x400)
#define QMI_ATRANS1_BASE_BITS _u(0x00000fff)
#define QMI_ATRANS1_BASE_MSB _u(11)
#define QMI_ATRANS1_BASE_LSB _u(0)
#define QMI_ATRANS1_BASE_ACCESS "RW"
// =============================================================================
// Register : QMI_ATRANS2
// Description : Configure address translation for XIP virtual addresses
// 0x800000 through 0xbfffff (a 4 MiB window starting at +8 MiB).
//
// Address translation allows a program image to be executed in
// place at multiple physical flash addresses (for example, a
// double-buffered flash image for over-the-air updates), without
// the overhead of position-independent code.
//
// At reset, the address translation registers are initialised to
// an identity mapping, so that they can be ignored if address
// translation is not required.
//
// Note that the XIP cache is fully virtually addressed, so a
// cache flush is required after changing the address translation.
#define QMI_ATRANS2_OFFSET _u(0x0000003c)
#define QMI_ATRANS2_BITS _u(0x07ff0fff)
#define QMI_ATRANS2_RESET _u(0x04000800)
// -----------------------------------------------------------------------------
// Field : QMI_ATRANS2_SIZE
// Description : Translation aperture size for this virtual address range, in
// units of 4 kiB (one flash sector).
//
// Bits 21:12 of the virtual address are compared to SIZE. Offsets
// greater than SIZE return a bus error, and do not cause a QSPI
// access.
#define QMI_ATRANS2_SIZE_RESET _u(0x400)
#define QMI_ATRANS2_SIZE_BITS _u(0x07ff0000)
#define QMI_ATRANS2_SIZE_MSB _u(26)
#define QMI_ATRANS2_SIZE_LSB _u(16)
#define QMI_ATRANS2_SIZE_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_ATRANS2_BASE
// Description : Physical address base for this virtual address range, in units
// of 4 kiB (one flash sector).
//
// Taking a 24-bit virtual address, firstly bits 23:22 (the two
// MSBs) are masked to zero, and then BASE is added to bits 23:12
// (the upper 12 bits) to form the physical address. Translation
// wraps on a 16 MiB boundary.
#define QMI_ATRANS2_BASE_RESET _u(0x800)
#define QMI_ATRANS2_BASE_BITS _u(0x00000fff)
#define QMI_ATRANS2_BASE_MSB _u(11)
#define QMI_ATRANS2_BASE_LSB _u(0)
#define QMI_ATRANS2_BASE_ACCESS "RW"
// =============================================================================
// Register : QMI_ATRANS3
// Description : Configure address translation for XIP virtual addresses
// 0xc00000 through 0xffffff (a 4 MiB window starting at +12 MiB).
//
// Address translation allows a program image to be executed in
// place at multiple physical flash addresses (for example, a
// double-buffered flash image for over-the-air updates), without
// the overhead of position-independent code.
//
// At reset, the address translation registers are initialised to
// an identity mapping, so that they can be ignored if address
// translation is not required.
//
// Note that the XIP cache is fully virtually addressed, so a
// cache flush is required after changing the address translation.
#define QMI_ATRANS3_OFFSET _u(0x00000040)
#define QMI_ATRANS3_BITS _u(0x07ff0fff)
#define QMI_ATRANS3_RESET _u(0x04000c00)
// -----------------------------------------------------------------------------
// Field : QMI_ATRANS3_SIZE
// Description : Translation aperture size for this virtual address range, in
// units of 4 kiB (one flash sector).
//
// Bits 21:12 of the virtual address are compared to SIZE. Offsets
// greater than SIZE return a bus error, and do not cause a QSPI
// access.
#define QMI_ATRANS3_SIZE_RESET _u(0x400)
#define QMI_ATRANS3_SIZE_BITS _u(0x07ff0000)
#define QMI_ATRANS3_SIZE_MSB _u(26)
#define QMI_ATRANS3_SIZE_LSB _u(16)
#define QMI_ATRANS3_SIZE_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_ATRANS3_BASE
// Description : Physical address base for this virtual address range, in units
// of 4 kiB (one flash sector).
//
// Taking a 24-bit virtual address, firstly bits 23:22 (the two
// MSBs) are masked to zero, and then BASE is added to bits 23:12
// (the upper 12 bits) to form the physical address. Translation
// wraps on a 16 MiB boundary.
#define QMI_ATRANS3_BASE_RESET _u(0xc00)
#define QMI_ATRANS3_BASE_BITS _u(0x00000fff)
#define QMI_ATRANS3_BASE_MSB _u(11)
#define QMI_ATRANS3_BASE_LSB _u(0)
#define QMI_ATRANS3_BASE_ACCESS "RW"
// =============================================================================
// Register : QMI_ATRANS4
// Description : Configure address translation for XIP virtual addresses
// 0x1000000 through 0x13fffff (a 4 MiB window starting at +16
// MiB).
//
// Address translation allows a program image to be executed in
// place at multiple physical flash addresses (for example, a
// double-buffered flash image for over-the-air updates), without
// the overhead of position-independent code.
//
// At reset, the address translation registers are initialised to
// an identity mapping, so that they can be ignored if address
// translation is not required.
//
// Note that the XIP cache is fully virtually addressed, so a
// cache flush is required after changing the address translation.
#define QMI_ATRANS4_OFFSET _u(0x00000044)
#define QMI_ATRANS4_BITS _u(0x07ff0fff)
#define QMI_ATRANS4_RESET _u(0x04000000)
// -----------------------------------------------------------------------------
// Field : QMI_ATRANS4_SIZE
// Description : Translation aperture size for this virtual address range, in
// units of 4 kiB (one flash sector).
//
// Bits 21:12 of the virtual address are compared to SIZE. Offsets
// greater than SIZE return a bus error, and do not cause a QSPI
// access.
#define QMI_ATRANS4_SIZE_RESET _u(0x400)
#define QMI_ATRANS4_SIZE_BITS _u(0x07ff0000)
#define QMI_ATRANS4_SIZE_MSB _u(26)
#define QMI_ATRANS4_SIZE_LSB _u(16)
#define QMI_ATRANS4_SIZE_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_ATRANS4_BASE
// Description : Physical address base for this virtual address range, in units
// of 4 kiB (one flash sector).
//
// Taking a 24-bit virtual address, firstly bits 23:22 (the two
// MSBs) are masked to zero, and then BASE is added to bits 23:12
// (the upper 12 bits) to form the physical address. Translation
// wraps on a 16 MiB boundary.
#define QMI_ATRANS4_BASE_RESET _u(0x000)
#define QMI_ATRANS4_BASE_BITS _u(0x00000fff)
#define QMI_ATRANS4_BASE_MSB _u(11)
#define QMI_ATRANS4_BASE_LSB _u(0)
#define QMI_ATRANS4_BASE_ACCESS "RW"
// =============================================================================
// Register : QMI_ATRANS5
// Description : Configure address translation for XIP virtual addresses
// 0x1400000 through 0x17fffff (a 4 MiB window starting at +20
// MiB).
//
// Address translation allows a program image to be executed in
// place at multiple physical flash addresses (for example, a
// double-buffered flash image for over-the-air updates), without
// the overhead of position-independent code.
//
// At reset, the address translation registers are initialised to
// an identity mapping, so that they can be ignored if address
// translation is not required.
//
// Note that the XIP cache is fully virtually addressed, so a
// cache flush is required after changing the address translation.
#define QMI_ATRANS5_OFFSET _u(0x00000048)
#define QMI_ATRANS5_BITS _u(0x07ff0fff)
#define QMI_ATRANS5_RESET _u(0x04000400)
// -----------------------------------------------------------------------------
// Field : QMI_ATRANS5_SIZE
// Description : Translation aperture size for this virtual address range, in
// units of 4 kiB (one flash sector).
//
// Bits 21:12 of the virtual address are compared to SIZE. Offsets
// greater than SIZE return a bus error, and do not cause a QSPI
// access.
#define QMI_ATRANS5_SIZE_RESET _u(0x400)
#define QMI_ATRANS5_SIZE_BITS _u(0x07ff0000)
#define QMI_ATRANS5_SIZE_MSB _u(26)
#define QMI_ATRANS5_SIZE_LSB _u(16)
#define QMI_ATRANS5_SIZE_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_ATRANS5_BASE
// Description : Physical address base for this virtual address range, in units
// of 4 kiB (one flash sector).
//
// Taking a 24-bit virtual address, firstly bits 23:22 (the two
// MSBs) are masked to zero, and then BASE is added to bits 23:12
// (the upper 12 bits) to form the physical address. Translation
// wraps on a 16 MiB boundary.
#define QMI_ATRANS5_BASE_RESET _u(0x400)
#define QMI_ATRANS5_BASE_BITS _u(0x00000fff)
#define QMI_ATRANS5_BASE_MSB _u(11)
#define QMI_ATRANS5_BASE_LSB _u(0)
#define QMI_ATRANS5_BASE_ACCESS "RW"
// =============================================================================
// Register : QMI_ATRANS6
// Description : Configure address translation for XIP virtual addresses
// 0x1800000 through 0x1bfffff (a 4 MiB window starting at +24
// MiB).
//
// Address translation allows a program image to be executed in
// place at multiple physical flash addresses (for example, a
// double-buffered flash image for over-the-air updates), without
// the overhead of position-independent code.
//
// At reset, the address translation registers are initialised to
// an identity mapping, so that they can be ignored if address
// translation is not required.
//
// Note that the XIP cache is fully virtually addressed, so a
// cache flush is required after changing the address translation.
#define QMI_ATRANS6_OFFSET _u(0x0000004c)
#define QMI_ATRANS6_BITS _u(0x07ff0fff)
#define QMI_ATRANS6_RESET _u(0x04000800)
// -----------------------------------------------------------------------------
// Field : QMI_ATRANS6_SIZE
// Description : Translation aperture size for this virtual address range, in
// units of 4 kiB (one flash sector).
//
// Bits 21:12 of the virtual address are compared to SIZE. Offsets
// greater than SIZE return a bus error, and do not cause a QSPI
// access.
#define QMI_ATRANS6_SIZE_RESET _u(0x400)
#define QMI_ATRANS6_SIZE_BITS _u(0x07ff0000)
#define QMI_ATRANS6_SIZE_MSB _u(26)
#define QMI_ATRANS6_SIZE_LSB _u(16)
#define QMI_ATRANS6_SIZE_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_ATRANS6_BASE
// Description : Physical address base for this virtual address range, in units
// of 4 kiB (one flash sector).
//
// Taking a 24-bit virtual address, firstly bits 23:22 (the two
// MSBs) are masked to zero, and then BASE is added to bits 23:12
// (the upper 12 bits) to form the physical address. Translation
// wraps on a 16 MiB boundary.
#define QMI_ATRANS6_BASE_RESET _u(0x800)
#define QMI_ATRANS6_BASE_BITS _u(0x00000fff)
#define QMI_ATRANS6_BASE_MSB _u(11)
#define QMI_ATRANS6_BASE_LSB _u(0)
#define QMI_ATRANS6_BASE_ACCESS "RW"
// =============================================================================
// Register : QMI_ATRANS7
// Description : Configure address translation for XIP virtual addresses
// 0x1c00000 through 0x1ffffff (a 4 MiB window starting at +28
// MiB).
//
// Address translation allows a program image to be executed in
// place at multiple physical flash addresses (for example, a
// double-buffered flash image for over-the-air updates), without
// the overhead of position-independent code.
//
// At reset, the address translation registers are initialised to
// an identity mapping, so that they can be ignored if address
// translation is not required.
//
// Note that the XIP cache is fully virtually addressed, so a
// cache flush is required after changing the address translation.
#define QMI_ATRANS7_OFFSET _u(0x00000050)
#define QMI_ATRANS7_BITS _u(0x07ff0fff)
#define QMI_ATRANS7_RESET _u(0x04000c00)
// -----------------------------------------------------------------------------
// Field : QMI_ATRANS7_SIZE
// Description : Translation aperture size for this virtual address range, in
// units of 4 kiB (one flash sector).
//
// Bits 21:12 of the virtual address are compared to SIZE. Offsets
// greater than SIZE return a bus error, and do not cause a QSPI
// access.
#define QMI_ATRANS7_SIZE_RESET _u(0x400)
#define QMI_ATRANS7_SIZE_BITS _u(0x07ff0000)
#define QMI_ATRANS7_SIZE_MSB _u(26)
#define QMI_ATRANS7_SIZE_LSB _u(16)
#define QMI_ATRANS7_SIZE_ACCESS "RW"
// -----------------------------------------------------------------------------
// Field : QMI_ATRANS7_BASE
// Description : Physical address base for this virtual address range, in units
// of 4 kiB (one flash sector).
//
// Taking a 24-bit virtual address, firstly bits 23:22 (the two
// MSBs) are masked to zero, and then BASE is added to bits 23:12
// (the upper 12 bits) to form the physical address. Translation
// wraps on a 16 MiB boundary.
#define QMI_ATRANS7_BASE_RESET _u(0xc00)
#define QMI_ATRANS7_BASE_BITS _u(0x00000fff)
#define QMI_ATRANS7_BASE_MSB _u(11)
#define QMI_ATRANS7_BASE_LSB _u(0)
#define QMI_ATRANS7_BASE_ACCESS "RW"
// =============================================================================
#endif // _HARDWARE_REGS_QMI_H