katapult/src/canboot_main.c
Kevin O'Connor 62971c1807 canboot_main: Minor fixes
Wrap defines with expressions in parenthesis.

MAX_OBUF_SIZE is in bytes - divide by 4 for number of words.

Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
2022-05-09 17:12:24 -04:00

318 lines
9.4 KiB
C

// Canboot main event loop
//
// Copyright (C) 2021 Eric Callahan <arksine.code@gmail.com>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
#include <string.h> // memmove
#include "autoconf.h" // CONFIG_*
#include "board/misc.h" // delay_ms
#include "board/canbus.h" // canbus_send
#include "board/flash.h" // write_page
#include "board/gpio.h" // gpio_in_setup
#include "canboot_main.h" // canboot_main
#include "ctr.h" // DECL_CTR
#include "led.h" // check_blink_time
#include "byteorder.h" // cpu_to_le32
#define PROTO_VERSION 0x00010000 // Version 1.0.0
#define PROTO_SIZE 4
#define CMD_BUF_SIZE (CONFIG_BLOCK_SIZE + 64)
#define MAX_OBUF_SIZE (CONFIG_BLOCK_SIZE + 16)
#define CMD_CONNECT 0x11
#define CMD_RX_BLOCK 0x12
#define CMD_RX_EOF 0x13
#define CMD_REQ_BLOCK 0x14
#define CMD_COMPLETE 0x15
#define ACK_COMMAND 0xa0
// Command Format:
// <2 byte header> <1 byte cmd> <1 byte data word count> <data> <2 byte crc> <2 byte trailer>
#define CMD_HEADER 0x0188
#define CMD_TRAILER 0x9903
#define WAIT_BLINK_TIME 1000000
#define XFER_BLINK_TIME 20000
#define REQUEST_SIG 0x5984E3FA6CA1589B // Random request sig
static uint8_t nack[8] = {0x01, 0x88, 0xF1, 0x00, 0x68, 0x95, 0x99, 0x03};
static uint8_t page_buffer[CONFIG_MAX_FLASH_PAGE_SIZE];
// Input Tracking
static uint8_t cmd_buf[CMD_BUF_SIZE];
static uint8_t cmd_pos = 0;
// Page Tracking
static uint32_t last_page_address = 0;
static uint8_t page_pending = 0;
static uint32_t blink_time = WAIT_BLINK_TIME;
static uint8_t complete = 0;
static void
send_ack(uint32_t* data, uint8_t payload_len)
{
// First four bytes: 2 byte header, ack_type, data length
data[0] = cpu_to_le32(payload_len << 24 | ACK_COMMAND << 16 | 0x8801);
// calculate the CRC
uint16_t crc = crc16_ccitt((uint8_t *)data + 2, payload_len * 4 + 2);
data[payload_len + 1] = cpu_to_le32(0x0399 << 16 | crc);
canboot_sendf((uint8_t *)data, (payload_len + 2) * 4);
}
static void
write_page(uint32_t page_address)
{
flash_write_page(page_address, (uint16_t*)page_buffer);
memset(page_buffer, 0xFF, sizeof(page_buffer));
last_page_address = page_address;
page_pending = 0;
}
static void
process_read_block(uint32_t* data, uint8_t data_len) {
uint32_t block_address = le32_to_cpu(data[0]);
uint8_t word_len = CONFIG_BLOCK_SIZE / 4 + 2;
uint32_t out[MAX_OBUF_SIZE / 4];
out[1] = cpu_to_le32(CMD_REQ_BLOCK);
out[2] = cpu_to_le32(block_address);
flash_read_block(block_address, &out[3]);
send_ack(out, word_len);
}
static void
process_write_block(uint32_t* data, uint8_t data_len) {
if (data_len != (CONFIG_BLOCK_SIZE / 4) + 1) {
canboot_sendf(nack, 8);
return;
}
uint32_t block_address = le32_to_cpu(data[0]);
uint32_t flash_page_size = flash_get_page_size();
uint32_t page_pos = block_address % flash_page_size;
memcpy(&page_buffer[page_pos], (uint8_t *)&data[1], CONFIG_BLOCK_SIZE);
page_pending = 1;
if (page_pos + CONFIG_BLOCK_SIZE == flash_page_size)
write_page(block_address - page_pos);
uint32_t out[4];
out[1] = cpu_to_le32(CMD_RX_BLOCK);
out[2] = cpu_to_le32(block_address);
send_ack(out, 2);
}
static void
process_eof(void)
{
uint32_t flash_page_size = flash_get_page_size();
if (page_pending) {
write_page(last_page_address + flash_page_size);
}
flash_complete();
uint32_t out[4];
out[1] = cpu_to_le32(CMD_RX_EOF);
out[2] = cpu_to_le32(
((last_page_address - CONFIG_APPLICATION_START)
/ flash_page_size) + 1);
send_ack(out, 2);
}
static void
process_complete(void)
{
uint32_t out[3];
out[1] = cpu_to_le32(CMD_COMPLETE);
send_ack(out, 1);
complete = 1;
}
static void
process_connnect(void)
{
uint32_t out[6];
out[1] = cpu_to_le32(CMD_CONNECT);
out[2] = cpu_to_le32(PROTO_VERSION);
out[3] = cpu_to_le32(CONFIG_APPLICATION_START);
out[4] = cpu_to_le32(CONFIG_BLOCK_SIZE);
send_ack(out, 4);
}
static inline void
process_command(uint8_t cmd, uint32_t* data, uint8_t data_len)
{
switch (cmd) {
case CMD_CONNECT:
process_connnect();
break;
case CMD_RX_BLOCK:
blink_time = XFER_BLINK_TIME;
process_write_block(data, data_len);
break;
case CMD_RX_EOF:
blink_time = WAIT_BLINK_TIME;
process_eof();
break;
case CMD_REQ_BLOCK:
blink_time = XFER_BLINK_TIME;
process_read_block(data, data_len);
break;
case CMD_COMPLETE:
process_complete();
break;
default:
// Unknown command or gabage data, NACK it
canboot_sendf(nack, 8);
}
}
static inline void
decode_command(void)
{
uint8_t remaining = cmd_pos;
uint8_t *tmpbuf = cmd_buf;
while (remaining) {
if (tmpbuf[0] == 0x01) {
// potential match
if (remaining >= PROTO_SIZE) {
uint16_t header = tmpbuf[0] << 8 | tmpbuf[1];
uint8_t cmd = tmpbuf[2];
uint8_t length = tmpbuf[3];
uint16_t full_length = PROTO_SIZE * 2 + length * 4;
if (header == CMD_HEADER) {
if (full_length > CMD_BUF_SIZE) {
// packet too large, nack it and move on
canboot_sendf(nack, 8);
} else if (remaining >= full_length) {
remaining -= full_length;
uint16_t fpos = full_length - 4;
uint16_t trailer = tmpbuf[fpos + 2] << 8 | tmpbuf[fpos + 3];
if (trailer != CMD_TRAILER) {
canboot_sendf(nack, 8);
} else {
uint16_t crc = le16_to_cpu(*(uint16_t *)(&tmpbuf[fpos]));
uint16_t calc_crc = crc16_ccitt(&tmpbuf[2], full_length - 6);
if (crc != calc_crc) {
canboot_sendf(nack, 8);
} else {
// valid command, process
process_command(cmd, (uint32_t *)&tmpbuf[4], length);
}
}
if (!remaining)
break;
} else {
// Header is valid, haven't received full packet
break;
}
}
} else {
// Not enough data, check again after the next read
break;
}
}
remaining--;
tmpbuf++;
}
if (remaining) {
// move the buffer
uint8_t rpos = cmd_pos - remaining;
memmove(&cmd_buf[0], &cmd_buf[rpos], remaining);
}
cmd_pos = remaining;
}
void
canboot_process_rx(uint8_t *data, uint32_t len)
{
// read into the command buffer
if (cmd_pos >= CMD_BUF_SIZE)
return;
else if (cmd_pos + len > CMD_BUF_SIZE)
len = CMD_BUF_SIZE - cmd_pos;
memcpy(&cmd_buf[cmd_pos], data, len);
cmd_pos += len;
if (cmd_pos > PROTO_SIZE)
decode_command();
}
static inline uint8_t
check_application_code(void)
{
// Read the first block of memory, if it
// is all 0xFF then no application has been flashed
flash_read_block(CONFIG_APPLICATION_START, (uint32_t*)page_buffer);
for (uint8_t i = 0; i < CONFIG_BLOCK_SIZE; i++) {
if (page_buffer[i] != 0xFF)
return 1;
}
return 0;
}
// Generated by buildcommands.py
DECL_CTR("DECL_BUTTON " __stringify(CONFIG_BUTTON_PIN));
extern int32_t button_gpio, button_high, button_pullup;
// Check for a bootloader request via double tap of reset button
static int
check_button_pressed(void)
{
if (!CONFIG_ENABLE_BUTTON)
return 0;
struct gpio_in button = gpio_in_setup(button_gpio, button_pullup);
udelay(10);
return gpio_in_read(button) == button_high;
}
// Check for a bootloader request via double tap of reset button
static void
check_double_reset(void)
{
if (!CONFIG_ENABLE_DOUBLE_RESET)
return;
// set request signature and delay for two seconds. This enters the bootloader if
// the reset button is double clicked
set_bootup_code(REQUEST_SIG);
udelay(500000);
set_bootup_code(0);
// No reset, read the key back out to clear it
}
/****************************************************************
* Startup
****************************************************************/
static void
enter_bootloader(void)
{
can_init();
led_init();
for (;;) {
canbus_rx_task();
canbus_tx_task();
check_blink_time(blink_time);
if (complete && canbus_tx_clear())
// wait until we are complete and the ack has returned
break;
}
// Flash Complete, system reset
udelay(100000);
canbus_reboot();
}
// Main loop of program
void
canboot_main(void)
{
// Enter the bootloader in the following conditions:
// - The request signature is set in memory (request from app)
// - No application code is present
uint64_t bootup_code = get_bootup_code();
if (bootup_code == REQUEST_SIG || !check_application_code()
|| check_button_pressed()) {
set_bootup_code(0);
enter_bootloader();
}
check_double_reset();
// jump to app
jump_to_application();
}