stm32: sync low level code with klipper

Signed-off-by:  Eric Callahan <arksine.code@gmail.com>
This commit is contained in:
Eric Callahan 2024-08-05 06:08:39 -04:00
parent 49e93194a4
commit 3e3ca24beb
6 changed files with 215 additions and 90 deletions

View File

@ -60,16 +60,23 @@
|| CONFIG_STM32_CANBUS_PB5_PB6 ||CONFIG_STM32_CANBUS_PB12_PB13) || CONFIG_STM32_CANBUS_PB5_PB6 ||CONFIG_STM32_CANBUS_PB12_PB13)
#define SOC_CAN FDCAN1 #define SOC_CAN FDCAN1
#define MSG_RAM (((struct fdcan_ram_layout*)SRAMCAN_BASE)->fdcan1) #define MSG_RAM (((struct fdcan_ram_layout*)SRAMCAN_BASE)->fdcan1)
#if CONFIG_MACH_STM32H7 || CONFIG_MACH_STM32G4
#define CAN_IT0_IRQn FDCAN1_IT0_IRQn
#endif
#else #else
#define SOC_CAN FDCAN2 #define SOC_CAN FDCAN2
#define MSG_RAM (((struct fdcan_ram_layout*)SRAMCAN_BASE)->fdcan2) #define MSG_RAM (((struct fdcan_ram_layout*)SRAMCAN_BASE)->fdcan2)
#if CONFIG_MACH_STM32H7 || CONFIG_MACH_STM32G4
#define CAN_IT0_IRQn FDCAN2_IT0_IRQn
#endif
#endif #endif
#if CONFIG_MACH_STM32G0 #if CONFIG_MACH_STM32G0
#define CAN_IT0_IRQn TIM16_FDCAN_IT0_IRQn #define CAN_IT0_IRQn TIM16_FDCAN_IT0_IRQn
#define CAN_FUNCTION GPIO_FUNCTION(3) // Alternative function mapping number #define CAN_FUNCTION GPIO_FUNCTION(3) // Alternative function mapping number
#elif CONFIG_MACH_STM32H7 || CONFIG_MACH_STM32G4 #endif
#define CAN_IT0_IRQn FDCAN1_IT0_IRQn
#if CONFIG_MACH_STM32H7 || CONFIG_MACH_STM32G4
#define CAN_FUNCTION GPIO_FUNCTION(9) // Alternative function mapping number #define CAN_FUNCTION GPIO_FUNCTION(9) // Alternative function mapping number
#endif #endif
@ -162,10 +169,10 @@ canhw_set_filter(uint32_t id)
can_filter(1, id); can_filter(1, id);
can_filter(2, id + 1); can_filter(2, id + 1);
#if CONFIG_MACH_STM32G0 #if CONFIG_MACH_STM32G0 || CONFIG_MACH_STM32G4
SOC_CAN->RXGFC = ((id ? 3 : 1) << FDCAN_RXGFC_LSS_Pos SOC_CAN->RXGFC = ((id ? 3 : 1) << FDCAN_RXGFC_LSS_Pos
| 0x02 << FDCAN_RXGFC_ANFS_Pos); | 0x02 << FDCAN_RXGFC_ANFS_Pos);
#elif CONFIG_MACH_STM32H7 || CONFIG_MAC_STM32G4 #elif CONFIG_MACH_STM32H7
uint32_t flssa = (uint32_t)MSG_RAM.FLS - SRAMCAN_BASE; uint32_t flssa = (uint32_t)MSG_RAM.FLS - SRAMCAN_BASE;
SOC_CAN->SIDFC = flssa | ((id ? 3 : 1) << FDCAN_SIDFC_LSS_Pos); SOC_CAN->SIDFC = flssa | ((id ? 3 : 1) << FDCAN_SIDFC_LSS_Pos);
SOC_CAN->GFC = 0x02 << FDCAN_GFC_ANFS_Pos; SOC_CAN->GFC = 0x02 << FDCAN_GFC_ANFS_Pos;
@ -293,7 +300,7 @@ can_init(void)
SOC_CAN->NBTP = btr; SOC_CAN->NBTP = btr;
#if CONFIG_MACH_STM32H7 || CONFIG_MAC_STM32G4 #if CONFIG_MACH_STM32H7
/* Setup message RAM addresses */ /* Setup message RAM addresses */
uint32_t f0sa = (uint32_t)MSG_RAM.RXF0 - SRAMCAN_BASE; uint32_t f0sa = (uint32_t)MSG_RAM.RXF0 - SRAMCAN_BASE;
SOC_CAN->RXF0C = f0sa | (ARRAY_SIZE(MSG_RAM.RXF0) << FDCAN_RXF0C_F0S_Pos); SOC_CAN->RXF0C = f0sa | (ARRAY_SIZE(MSG_RAM.RXF0) << FDCAN_RXF0C_F0S_Pos);

View File

@ -68,7 +68,7 @@
DECL_CONSTANT_STR("RESERVE_PINS_serial", "PD9,PD8"); DECL_CONSTANT_STR("RESERVE_PINS_serial", "PD9,PD8");
#define GPIO_Rx GPIO('D', 9) #define GPIO_Rx GPIO('D', 9)
#define GPIO_Tx GPIO('D', 8) #define GPIO_Tx GPIO('D', 8)
#define USARTx_FUNCTION GPIO_FUNCTION(7) #define USARTx_FUNCTION GPIO_FUNCTION(CONFIG_MACH_STM32G0 ? 0 : 7)
#define USARTx USART3 #define USARTx USART3
#define USARTx_IRQn USART3_IRQn #define USARTx_IRQn USART3_IRQn
#elif CONFIG_STM32_SERIAL_UART4 #elif CONFIG_STM32_SERIAL_UART4
@ -78,6 +78,13 @@
#define USARTx_FUNCTION GPIO_FUNCTION(8) #define USARTx_FUNCTION GPIO_FUNCTION(8)
#define USARTx UART4 #define USARTx UART4
#define USARTx_IRQn UART4_IRQn #define USARTx_IRQn UART4_IRQn
#elif CONFIG_STM32_SERIAL_USART5
DECL_CONSTANT_STR("RESERVE_PINS_serial", "PD2,PD3");
#define GPIO_Rx GPIO('D', 2)
#define GPIO_Tx GPIO('D', 3)
#define USARTx_FUNCTION GPIO_FUNCTION(3)
#define USARTx USART5
#define USARTx_IRQn USART5_IRQn
#endif #endif
#if CONFIG_MACH_STM32F031 #if CONFIG_MACH_STM32F031
@ -90,6 +97,17 @@
// Some of the stm32g0 MCUs have slightly different register names // Some of the stm32g0 MCUs have slightly different register names
#if CONFIG_MACH_STM32G0B1 #if CONFIG_MACH_STM32G0B1
#define USART2_IRQn USART2_LPUART2_IRQn #define USART2_IRQn USART2_LPUART2_IRQn
#define USART3_IRQn USART3_4_5_6_LPUART1_IRQn
#define USART4_IRQn USART3_4_5_6_LPUART1_IRQn
#define USART5_IRQn USART3_4_5_6_LPUART1_IRQn
#define USART6_IRQn USART3_4_5_6_LPUART1_IRQn
#endif
#if CONFIG_MACH_STM32G0B0
#define USART2_IRQn USART2_IRQn
#define USART3_IRQn USART3_4_5_6_IRQn
#define USART4_IRQn USART3_4_5_6_IRQn
#define USART5_IRQn USART3_4_5_6_IRQn
#define USART6_IRQn USART3_4_5_6_IRQn
#endif #endif
#define USART_CR1_RXNEIE USART_CR1_RXNEIE_RXFNEIE #define USART_CR1_RXNEIE USART_CR1_RXNEIE_RXFNEIE
#define USART_CR1_TXEIE USART_CR1_TXEIE_TXFNFIE #define USART_CR1_TXEIE USART_CR1_TXEIE_TXFNFIE

View File

@ -32,18 +32,30 @@ lookup_clock_line(uint32_t periph_base)
uint32_t bit = 1 << ((periph_base - AHBPERIPH_BASE) / 0x400); uint32_t bit = 1 << ((periph_base - AHBPERIPH_BASE) / 0x400);
return (struct cline){.en=&RCC->AHBENR, .rst=&RCC->AHBRSTR, .bit=bit}; return (struct cline){.en=&RCC->AHBENR, .rst=&RCC->AHBRSTR, .bit=bit};
} }
#ifdef USART5_BASE
if (periph_base == USART5_BASE)
return (struct cline){.en=&RCC->APBENR1,.rst=&RCC->APBRSTR1,.bit=1<<8};
#endif
#ifdef USART6_BASE
if (periph_base == USART6_BASE)
return (struct cline){.en=&RCC->APBENR1,.rst=&RCC->APBRSTR1,.bit=1<<9};
#endif
#if defined(FDCAN1_BASE) || defined(FDCAN2_BASE) #if defined(FDCAN1_BASE) || defined(FDCAN2_BASE)
if ((periph_base == FDCAN1_BASE) || (periph_base == FDCAN2_BASE)) if ((periph_base == FDCAN1_BASE) || (periph_base == FDCAN2_BASE))
return (struct cline){.en=&RCC->APBENR1,.rst=&RCC->APBRSTR1,.bit=1<<12}; return (struct cline){.en=&RCC->APBENR1,.rst=&RCC->APBRSTR1,.bit=1<<12};
#endif #endif
#ifdef USB_BASE
if (periph_base == USB_BASE) if (periph_base == USB_BASE)
return (struct cline){.en=&RCC->APBENR1,.rst=&RCC->APBRSTR1,.bit=1<<13}; return (struct cline){.en=&RCC->APBENR1,.rst=&RCC->APBRSTR1,.bit=1<<13};
#endif
#ifdef CRS_BASE #ifdef CRS_BASE
if (periph_base == CRS_BASE) if (periph_base == CRS_BASE)
return (struct cline){.en=&RCC->APBENR1,.rst=&RCC->APBRSTR1,.bit=1<<16}; return (struct cline){.en=&RCC->APBENR1,.rst=&RCC->APBRSTR1,.bit=1<<16};
#endif #endif
#ifdef I2C3_BASE
if (periph_base == I2C3_BASE) if (periph_base == I2C3_BASE)
return (struct cline){.en=&RCC->APBENR1,.rst=&RCC->APBRSTR1,.bit=1<<23}; return (struct cline){.en=&RCC->APBENR1,.rst=&RCC->APBRSTR1,.bit=1<<23};
#endif
if (periph_base == TIM1_BASE) if (periph_base == TIM1_BASE)
return (struct cline){.en=&RCC->APBENR2,.rst=&RCC->APBRSTR2,.bit=1<<11}; return (struct cline){.en=&RCC->APBENR2,.rst=&RCC->APBRSTR2,.bit=1<<11};
if (periph_base == SPI1_BASE) if (periph_base == SPI1_BASE)
@ -106,8 +118,11 @@ clock_setup(void)
} }
pllcfgr |= (pll_freq/pll_base) << RCC_PLLCFGR_PLLN_Pos; pllcfgr |= (pll_freq/pll_base) << RCC_PLLCFGR_PLLN_Pos;
pllcfgr |= (pll_freq/CONFIG_CLOCK_FREQ - 1) << RCC_PLLCFGR_PLLR_Pos; pllcfgr |= (pll_freq/CONFIG_CLOCK_FREQ - 1) << RCC_PLLCFGR_PLLR_Pos;
pllcfgr |= (pll_freq/FREQ_USB - 1) << RCC_PLLCFGR_PLLQ_Pos; #ifdef RCC_PLLCFGR_PLLQ
RCC->PLLCFGR = pllcfgr | RCC_PLLCFGR_PLLREN | RCC_PLLCFGR_PLLQEN; pllcfgr |= ((pll_freq/FREQ_USB - 1) << RCC_PLLCFGR_PLLQ_Pos)
| RCC_PLLCFGR_PLLQEN;
#endif
RCC->PLLCFGR = pllcfgr | RCC_PLLCFGR_PLLREN;
RCC->CR |= RCC_CR_PLLON; RCC->CR |= RCC_CR_PLLON;
// Wait for PLL lock // Wait for PLL lock
@ -119,8 +134,10 @@ clock_setup(void)
while ((RCC->CFGR & RCC_CFGR_SWS_Msk) != (2 << RCC_CFGR_SWS_Pos)) while ((RCC->CFGR & RCC_CFGR_SWS_Msk) != (2 << RCC_CFGR_SWS_Pos))
; ;
#ifdef USB_BASE
// Use PLLQCLK for USB (setting USBSEL=2 works in practice) // Use PLLQCLK for USB (setting USBSEL=2 works in practice)
RCC->CCIPR2 = 2 << RCC_CCIPR2_USBSEL_Pos; RCC->CCIPR2 = 2 << RCC_CCIPR2_USBSEL_Pos;
#endif
} }
@ -146,7 +163,7 @@ void
armcm_main(void) armcm_main(void)
{ {
// Disable internal pull-down resistors on UCPDx CCx pins // Disable internal pull-down resistors on UCPDx CCx pins
SYSCFG->CFGR1 |= (SYSCFG_CFGR1_UCPD1_STROBE | SYSCFG_CFGR1_UCPD2_STROBE); SYSCFG->CFGR1 |= (SYSCFG_CFGR1_UCPD1_STROBE | SYSCFG_CFGR1_UCPD2_STROBE);
SCB->VTOR = (uint32_t)VectorTable; SCB->VTOR = (uint32_t)VectorTable;
// Reset clock registers (in case bootloader has changed them) // Reset clock registers (in case bootloader has changed them)

View File

@ -40,6 +40,9 @@ lookup_clock_line(uint32_t periph_base)
uint32_t bit = 1 << ((periph_base - D2_AHB2PERIPH_BASE) / 0x400); uint32_t bit = 1 << ((periph_base - D2_AHB2PERIPH_BASE) / 0x400);
return (struct cline){.en=&RCC->AHB2ENR, .rst=&RCC->AHB2RSTR, .bit=bit}; return (struct cline){.en=&RCC->AHB2ENR, .rst=&RCC->AHB2RSTR, .bit=bit};
} else if (periph_base >= D2_AHB1PERIPH_BASE) { } else if (periph_base >= D2_AHB1PERIPH_BASE) {
if (periph_base == ADC12_COMMON_BASE)
return (struct cline){.en = &RCC->AHB1ENR, .rst = &RCC->AHB1RSTR,
.bit = RCC_AHB1ENR_ADC12EN};
uint32_t bit = 1 << ((periph_base - D2_AHB1PERIPH_BASE) / 0x400); uint32_t bit = 1 << ((periph_base - D2_AHB1PERIPH_BASE) / 0x400);
return (struct cline){.en=&RCC->AHB1ENR, .rst=&RCC->AHB1RSTR, .bit=bit}; return (struct cline){.en=&RCC->AHB1ENR, .rst=&RCC->AHB1RSTR, .bit=bit};
} else if (periph_base >= D2_APB2PERIPH_BASE) { } else if (periph_base >= D2_APB2PERIPH_BASE) {
@ -231,6 +234,12 @@ armcm_main(void)
RCC->D2CCIP1R = 0x00000000; RCC->D2CCIP1R = 0x00000000;
RCC->D2CCIP2R = 0x00000000; RCC->D2CCIP2R = 0x00000000;
RCC->D3CCIPR = 0x00000000; RCC->D3CCIPR = 0x00000000;
RCC->APB1LENR = 0x00000000;
RCC->APB1HENR = 0x00000000;
RCC->APB2ENR = 0x00000000;
RCC->APB3ENR = 0x00000000;
RCC->APB4ENR = 0x00000000;
SCB->VTOR = (uint32_t)VectorTable; SCB->VTOR = (uint32_t)VectorTable;
dfu_reboot_check(); dfu_reboot_check();

View File

@ -1,6 +1,6 @@
// Hardware interface to "fullspeed USB controller" // Hardware interface to "fullspeed USB controller"
// //
// Copyright (C) 2018-2021 Kevin O'Connor <kevin@koconnor.net> // Copyright (C) 2018-2023 Kevin O'Connor <kevin@koconnor.net>
// //
// This file may be distributed under the terms of the GNU GPLv3 license. // This file may be distributed under the terms of the GNU GPLv3 license.
@ -15,7 +15,7 @@
#include "internal.h" // GPIO #include "internal.h" // GPIO
#include "sched.h" // DECL_INIT #include "sched.h" // DECL_INIT
#if CONFIG_MACH_STM32F103 || CONFIG_MACH_STM32G4 #if CONFIG_MACH_STM32F1
// Transfer memory is accessed with 32bits, but contains only 16bits of data // Transfer memory is accessed with 32bits, but contains only 16bits of data
typedef volatile uint32_t epmword_t; typedef volatile uint32_t epmword_t;
#define WSIZE 2 #define WSIZE 2
@ -25,6 +25,11 @@
typedef volatile uint16_t epmword_t; typedef volatile uint16_t epmword_t;
#define WSIZE 2 #define WSIZE 2
#define USBx_IRQn USB_IRQn #define USBx_IRQn USB_IRQn
#elif CONFIG_MACH_STM32G4
// Transfer memory is accessed with 16bits and contains 16bits of data
typedef volatile uint16_t epmword_t;
#define WSIZE 2
#define USBx_IRQn USB_LP_IRQn
#elif CONFIG_MACH_STM32G0 #elif CONFIG_MACH_STM32G0
// Transfer memory is accessed with 32bits and contains 32bits of data // Transfer memory is accessed with 32bits and contains 32bits of data
typedef volatile uint32_t epmword_t; typedef volatile uint32_t epmword_t;
@ -48,6 +53,12 @@
#define USB_CNTR_FRES USB_CNTR_USBRST #define USB_CNTR_FRES USB_CNTR_USBRST
#endif #endif
// Some chip variants do not define these fields
#ifndef USB_EP_DTOG_TX_Pos
#define USB_EP_DTOG_TX_Pos 6
#define USB_EP_DTOG_RX_Pos 14
#endif
/**************************************************************** /****************************************************************
* USB transfer memory * USB transfer memory
@ -55,52 +66,50 @@
// Layout of the USB transfer memory // Layout of the USB transfer memory
#define EPM ((epmword_t*)USB_PMAADDR) #define EPM ((epmword_t*)USB_PMAADDR)
#define EPM_EP_DESC(ep) (&EPM[(ep) * (8 / WSIZE)]) #define EPM_EP_DESC(ep, bufnum) (&EPM[((ep)*2 + (bufnum)) * (4 / WSIZE)])
#define EPM_BUF_OFFSET 0x10 #define EPM_BUF_OFFSET 0x10
#define EPM_EP_BUF_SIZE (64 / WSIZE + 1) #define EPM_EP_BUF_SIZE (64 / WSIZE + 1)
#define EPM_EP_TX_BUF(ep) (&EPM[EPM_BUF_OFFSET + (ep)*2*EPM_EP_BUF_SIZE]) #define EPM_EP_BUF(ep, bufnum) \
#define EPM_EP_RX_BUF(ep) (&EPM[EPM_BUF_OFFSET + (1+(ep)*2)*EPM_EP_BUF_SIZE]) (&EPM[EPM_BUF_OFFSET + ((ep)*2 + (bufnum)) * EPM_EP_BUF_SIZE])
#define BUFTX 0
#define BUFRX 1
// Configure the usb descriptor for an endpoint // Configure the usb descriptor for an endpoint
static void static void
epm_ep_desc_setup(int ep, int rx_size) epm_ep_desc_setup(int ep, int bufnum, int rx_size)
{ {
uint32_t addr_tx = (EPM_EP_TX_BUF(ep) - EPM) * WSIZE, count_tx = 0; uint32_t addr = (EPM_EP_BUF(ep, bufnum) - EPM) * WSIZE;
uint32_t addr_rx = (EPM_EP_RX_BUF(ep) - EPM) * WSIZE;
uint32_t count_rx = (rx_size <= 30 ? DIV_ROUND_UP(rx_size, 2) << 10 uint32_t count_rx = (rx_size <= 30 ? DIV_ROUND_UP(rx_size, 2) << 10
: ((DIV_ROUND_UP(rx_size, 32) - 1) << 10) | 0x8000); : ((DIV_ROUND_UP(rx_size, 32) - 1) << 10) | 0x8000);
epmword_t *desc = EPM_EP_DESC(ep); epmword_t *desc = EPM_EP_DESC(ep, bufnum);
if (WSIZE == 2) { if (WSIZE == 2) {
desc[0] = addr_tx; desc[0] = addr;
desc[1] = count_tx; desc[1] = count_rx;
desc[2] = addr_rx;
desc[3] = count_rx;
} else { } else {
desc[0] = addr_tx | (count_tx << 16); *desc = addr | (count_rx << 16);
desc[1] = addr_rx | (count_rx << 16);
} }
} }
// Return number of read bytes on an rx endpoint // Return number of read bytes on an rx endpoint
static uint32_t static uint32_t
epm_get_ep_count_rx(int ep) epm_get_ep_count_rx(int ep, int bufnum)
{ {
epmword_t *desc = EPM_EP_DESC(ep); epmword_t *desc = EPM_EP_DESC(ep, bufnum);
if (WSIZE == 2) if (WSIZE == 2)
return desc[3] & 0x3ff; return desc[1] & 0x3ff;
return (desc[1] >> 16) & 0x3ff; return (*desc >> 16) & 0x3ff;
} }
// Set number of bytes ready to be transmitted on a tx endpoint // Set number of bytes ready to be transmitted on a tx endpoint
static void static void
epm_set_ep_count_tx(int ep, uint32_t count) epm_set_ep_count_tx(int ep, int bufnum, uint32_t count)
{ {
epmword_t *desc = EPM_EP_DESC(ep); epmword_t *desc = EPM_EP_DESC(ep, bufnum);
if (WSIZE == 2) { if (WSIZE == 2) {
desc[1] = count; desc[1] = count;
} else { } else {
uint32_t addr_tx = (EPM_EP_TX_BUF(ep) - EPM) * WSIZE; uint32_t addr_tx = (EPM_EP_BUF(ep, bufnum) - EPM) * WSIZE;
desc[0] = addr_tx | (count << 16); *desc = addr_tx | (count << 16);
} }
} }
@ -108,18 +117,22 @@ epm_set_ep_count_tx(int ep, uint32_t count)
static void static void
btable_configure(void) btable_configure(void)
{ {
epm_ep_desc_setup(0, USB_CDC_EP0_SIZE); epm_ep_desc_setup(0, BUFTX, 0);
epm_ep_desc_setup(USB_CDC_EP_ACM, 0); epm_ep_desc_setup(0, BUFRX, USB_CDC_EP0_SIZE);
epm_ep_desc_setup(USB_CDC_EP_BULK_OUT, USB_CDC_EP_BULK_OUT_SIZE); epm_ep_desc_setup(USB_CDC_EP_ACM, BUFTX, 0);
epm_ep_desc_setup(USB_CDC_EP_BULK_IN, 0); epm_ep_desc_setup(USB_CDC_EP_ACM, BUFRX, 0);
epm_ep_desc_setup(USB_CDC_EP_BULK_OUT, 0, USB_CDC_EP_BULK_OUT_SIZE);
epm_ep_desc_setup(USB_CDC_EP_BULK_OUT, 1, USB_CDC_EP_BULK_OUT_SIZE);
epm_ep_desc_setup(USB_CDC_EP_BULK_IN, 0, 0);
epm_ep_desc_setup(USB_CDC_EP_BULK_IN, 1, 0);
} }
// Read a packet stored in dedicated usb memory // Read a packet stored in dedicated usb memory
static uint32_t static uint32_t
btable_read_packet(int ep, uint8_t *dest, int max_len) btable_read_packet(int ep, int bufnum, uint8_t *dest, int max_len)
{ {
epmword_t *src = EPM_EP_RX_BUF(ep); epmword_t *src = EPM_EP_BUF(ep, bufnum);
uint32_t count = epm_get_ep_count_rx(ep); uint32_t count = epm_get_ep_count_rx(ep, bufnum);
if (count > max_len) if (count > max_len)
count = max_len; count = max_len;
int i; int i;
@ -145,9 +158,9 @@ btable_read_packet(int ep, uint8_t *dest, int max_len)
// Write a packet to dedicated usb memory // Write a packet to dedicated usb memory
static void static void
btable_write_packet(int ep, const uint8_t *src, int count) btable_write_packet(int ep, int bufnum, const uint8_t *src, int count)
{ {
epmword_t *dest = EPM_EP_TX_BUF(ep); epmword_t *dest = EPM_EP_BUF(ep, bufnum);
int i; int i;
for (i=0; i<count/WSIZE; i++) { for (i=0; i<count/WSIZE; i++) {
uint8_t b1 = *src++, b2 = *src++, b3 = 0, b4 = 0; uint8_t b1 = *src++, b2 = *src++, b3 = 0, b4 = 0;
@ -165,7 +178,7 @@ btable_write_packet(int ep, const uint8_t *src, int count)
d |= *src++ << 16; d |= *src++ << 16;
*dest = d; *dest = d;
} }
epm_set_ep_count_tx(ep, count); epm_set_ep_count_tx(ep, bufnum, count);
} }
@ -175,26 +188,27 @@ btable_write_packet(int ep, const uint8_t *src, int count)
#define USB_EPR ((volatile uint32_t *)USB_BASE) #define USB_EPR ((volatile uint32_t *)USB_BASE)
#define EPR_TBITS (USB_EP_DTOG_RX | USB_EPRX_STAT \
| USB_EP_DTOG_TX | USB_EPTX_STAT)
#define EPR_RWBITS (USB_EPADDR_FIELD | USB_EP_KIND | USB_EP_TYPE_MASK) #define EPR_RWBITS (USB_EPADDR_FIELD | USB_EP_KIND | USB_EP_TYPE_MASK)
#define EPR_RWCBITS (USB_EP_CTR_RX | USB_EP_CTR_TX) #define EPR_RWCBITS (USB_EP_CTR_RX | USB_EP_CTR_TX)
// Calculate the memory update needed to set the epr register
static uint32_t static uint32_t
set_stat_rx_bits(uint32_t epr, uint32_t bits) calc_epr_bits(uint32_t epr, uint32_t mask, uint32_t value)
{ {
return ((epr & (EPR_RWBITS | USB_EPRX_STAT)) ^ bits) | EPR_RWCBITS; uint32_t tmask = mask & EPR_TBITS, tvalue = value & tmask;
uint32_t rwmask = mask & EPR_RWBITS, rwbits = value & rwmask;
uint32_t cbits = EPR_RWCBITS & ~mask;
return (((epr & (EPR_RWBITS | tmask)) ^ tvalue) & ~rwmask) | rwbits | cbits;
} }
static uint32_t // Check if double buffering endpoint hardware can no longer send/receive
set_stat_tx_bits(uint32_t epr, uint32_t bits) static int
epr_is_dbuf_blocking(uint32_t epr)
{ {
return ((epr & (EPR_RWBITS | USB_EPTX_STAT)) ^ bits) | EPR_RWCBITS; return !(((epr >> (USB_EP_DTOG_RX_Pos - USB_EP_DTOG_TX_Pos)) ^ epr)
} & USB_EP_DTOG_TX);
static uint32_t
set_stat_rxtx_bits(uint32_t epr, uint32_t bits)
{
uint32_t mask = EPR_RWBITS | USB_EPRX_STAT | USB_EPTX_STAT;
return ((epr & mask) ^ bits) | EPR_RWCBITS;
} }
@ -202,39 +216,77 @@ set_stat_rxtx_bits(uint32_t epr, uint32_t bits)
* USB interface * USB interface
****************************************************************/ ****************************************************************/
static uint32_t bulk_out_pop_count, bulk_out_push_flag;
int_fast8_t int_fast8_t
usb_read_bulk_out(void *data, uint_fast8_t max_len) usb_read_bulk_out(void *data, uint_fast8_t max_len)
{ {
uint32_t epr = USB_EPR[USB_CDC_EP_BULK_OUT]; if (readl(&bulk_out_push_flag))
if ((epr & USB_EPRX_STAT) == USB_EP_RX_VALID)
// No data ready // No data ready
return -1; return -1;
uint32_t count = btable_read_packet(USB_CDC_EP_BULK_OUT, data, max_len); uint32_t ep = USB_CDC_EP_BULK_OUT;
USB_EPR[USB_CDC_EP_BULK_OUT] = set_stat_rx_bits(epr, USB_EP_RX_VALID); int bufnum = bulk_out_pop_count & 1;
bulk_out_pop_count++;
uint32_t count = btable_read_packet(ep, bufnum, data, max_len);
writel(&bulk_out_push_flag, USB_EP_DTOG_TX);
// Check if irq handler pulled another packet before push flag update
uint32_t epr = USB_EPR[ep];
if (epr_is_dbuf_blocking(epr) && readl(&bulk_out_push_flag)) {
// Second packet was already read - must notify hardware
writel(&bulk_out_push_flag, 0);
USB_EPR[ep] = calc_epr_bits(epr, 0, 0) | USB_EP_DTOG_TX;
}
return count; return count;
} }
static uint32_t bulk_in_push_pos, bulk_in_pop_flag;
#define BI_START 2
int_fast8_t int_fast8_t
usb_send_bulk_in(void *data, uint_fast8_t len) usb_send_bulk_in(void *data, uint_fast8_t len)
{ {
uint32_t epr = USB_EPR[USB_CDC_EP_BULK_IN]; if (readl(&bulk_in_pop_flag))
if ((epr & USB_EPTX_STAT) != USB_EP_TX_NAK)
// No buffer space available // No buffer space available
return -1; return -1;
btable_write_packet(USB_CDC_EP_BULK_IN, data, len); uint32_t ep = USB_CDC_EP_BULK_IN;
USB_EPR[USB_CDC_EP_BULK_IN] = set_stat_tx_bits(epr, USB_EP_TX_VALID); uint32_t bipp = bulk_in_push_pos, bufnum = bipp & 1;
bulk_in_push_pos = bipp ^ 1;
btable_write_packet(ep, bufnum, data, len);
writel(&bulk_in_pop_flag, USB_EP_DTOG_RX);
// Check if hardware needs to be notified
uint32_t epr = USB_EPR[ep];
if (epr_is_dbuf_blocking(epr) && readl(&bulk_in_pop_flag)) {
writel(&bulk_in_pop_flag, 0);
if (unlikely(bipp & BI_START)) {
// Two packets are always sent when starting in double
// buffering mode, so wait for second packet before starting.
if (bipp == (BI_START | 1)) {
bulk_in_push_pos = 0;
writel(&bulk_in_pop_flag, USB_EP_KIND); // Dummy flag
USB_EPR[ep] = calc_epr_bits(epr, USB_EPTX_STAT
, USB_EP_TX_VALID);
}
} else {
USB_EPR[ep] = calc_epr_bits(epr, 0, 0) | USB_EP_DTOG_RX;
}
}
return len; return len;
} }
int_fast8_t int_fast8_t
usb_read_ep0(void *data, uint_fast8_t max_len) usb_read_ep0(void *data, uint_fast8_t max_len)
{ {
uint32_t epr = USB_EPR[0]; uint32_t ep = 0, epr = USB_EPR[ep];
if ((epr & USB_EPRX_STAT) != USB_EP_RX_NAK) if ((epr & USB_EPRX_STAT) != USB_EP_RX_NAK)
// No data ready // No data ready
return -1; return -1;
uint32_t count = btable_read_packet(0, data, max_len); uint32_t count = btable_read_packet(ep, BUFRX, data, max_len);
USB_EPR[0] = set_stat_rxtx_bits(epr, USB_EP_RX_VALID | USB_EP_TX_NAK); USB_EPR[ep] = calc_epr_bits(epr, USB_EPRX_STAT | USB_EPTX_STAT
, USB_EP_RX_VALID | USB_EP_TX_NAK);
return count; return count;
} }
@ -247,23 +299,24 @@ usb_read_ep0_setup(void *data, uint_fast8_t max_len)
int_fast8_t int_fast8_t
usb_send_ep0(const void *data, uint_fast8_t len) usb_send_ep0(const void *data, uint_fast8_t len)
{ {
uint32_t epr = USB_EPR[0]; uint32_t ep = 0, epr = USB_EPR[ep];
if ((epr & USB_EPRX_STAT) != USB_EP_RX_VALID) if ((epr & USB_EPRX_STAT) != USB_EP_RX_VALID)
// Transfer interrupted // Transfer interrupted
return -2; return -2;
if ((epr & USB_EPTX_STAT) != USB_EP_TX_NAK) if ((epr & USB_EPTX_STAT) != USB_EP_TX_NAK)
// No buffer space available // No buffer space available
return -1; return -1;
btable_write_packet(0, data, len); btable_write_packet(ep, BUFTX, data, len);
USB_EPR[0] = set_stat_tx_bits(epr, USB_EP_TX_VALID); USB_EPR[ep] = calc_epr_bits(epr, USB_EPTX_STAT, USB_EP_TX_VALID);
return len; return len;
} }
void void
usb_stall_ep0(void) usb_stall_ep0(void)
{ {
USB_EPR[0] = set_stat_rxtx_bits(USB_EPR[0] uint32_t ep = 0, epr = USB_EPR[ep];
, USB_EP_RX_STALL | USB_EP_TX_STALL); USB_EPR[ep] = calc_epr_bits(epr, USB_EPRX_STAT | USB_EPTX_STAT
, USB_EP_RX_STALL | USB_EP_TX_STALL);
} }
static uint8_t set_address; static uint8_t set_address;
@ -278,6 +331,13 @@ usb_set_address(uint_fast8_t addr)
void void
usb_set_configure(void) usb_set_configure(void)
{ {
uint32_t ep = USB_CDC_EP_BULK_OUT;
bulk_out_pop_count = 0;
USB_EPR[ep] = calc_epr_bits(USB_EPR[ep], USB_EPRX_STAT, USB_EP_RX_VALID);
ep = USB_CDC_EP_BULK_IN;
bulk_in_push_pos = BI_START;
writel(&bulk_in_pop_flag, 0);
} }
@ -289,13 +349,22 @@ usb_set_configure(void)
static void static void
usb_reset(void) usb_reset(void)
{ {
USB_EPR[0] = 0 | USB_EP_CONTROL | USB_EP_RX_VALID | USB_EP_TX_NAK; uint32_t ep = 0;
USB_EPR[USB_CDC_EP_ACM] = (USB_CDC_EP_ACM | USB_EP_INTERRUPT USB_EPR[ep] = 0 | USB_EP_CONTROL | USB_EP_RX_VALID | USB_EP_TX_NAK;
| USB_EP_RX_NAK | USB_EP_TX_NAK);
USB_EPR[USB_CDC_EP_BULK_OUT] = (USB_CDC_EP_BULK_OUT | USB_EP_BULK ep = USB_CDC_EP_ACM;
| USB_EP_RX_VALID | USB_EP_TX_NAK); USB_EPR[ep] = (USB_CDC_EP_ACM | USB_EP_INTERRUPT
USB_EPR[USB_CDC_EP_BULK_IN] = (USB_CDC_EP_BULK_IN | USB_EP_BULK | USB_EP_RX_NAK | USB_EP_TX_NAK);
| USB_EP_RX_NAK | USB_EP_TX_NAK);
ep = USB_CDC_EP_BULK_OUT;
USB_EPR[ep] = (USB_CDC_EP_BULK_OUT | USB_EP_BULK | USB_EP_KIND
| USB_EP_RX_NAK | USB_EP_DTOG_TX);
bulk_out_push_flag = USB_EP_DTOG_TX;
ep = USB_CDC_EP_BULK_IN;
USB_EPR[ep] = (USB_CDC_EP_BULK_IN | USB_EP_BULK | USB_EP_KIND
| USB_EP_TX_NAK);
bulk_in_pop_flag = USB_EP_DTOG_RX;
USB->CNTR = USB_CNTR_CTRM | USB_CNTR_RESETM; USB->CNTR = USB_CNTR_CTRM | USB_CNTR_RESETM;
USB->DADDR = USB_DADDR_EF; USB->DADDR = USB_DADDR_EF;
@ -308,20 +377,25 @@ USB_IRQHandler(void)
uint32_t istr = USB->ISTR; uint32_t istr = USB->ISTR;
if (istr & USB_ISTR_CTR) { if (istr & USB_ISTR_CTR) {
// Endpoint activity // Endpoint activity
uint32_t ep = istr & USB_ISTR_EP_ID; uint32_t ep = istr & USB_ISTR_EP_ID, epr = USB_EPR[ep];
uint32_t epr = USB_EPR[ep]; if (ep == USB_CDC_EP_BULK_OUT) {
USB_EPR[ep] = epr & EPR_RWBITS; USB_EPR[ep] = (calc_epr_bits(epr, USB_EP_CTR_RX | USB_EP_CTR_TX, 0)
if (ep == 0) { | bulk_out_push_flag);
bulk_out_push_flag = 0;
usb_notify_bulk_out();
} else if (ep == USB_CDC_EP_BULK_IN) {
USB_EPR[ep] = (calc_epr_bits(epr, USB_EP_CTR_RX | USB_EP_CTR_TX, 0)
| bulk_in_pop_flag);
bulk_in_pop_flag = 0;
usb_notify_bulk_in();
} else if (ep == 0) {
USB_EPR[ep] = calc_epr_bits(epr, USB_EP_CTR_RX | USB_EP_CTR_TX, 0);
usb_notify_ep0(); usb_notify_ep0();
if (epr & USB_EP_CTR_TX && set_address) { if (epr & USB_EP_CTR_TX && set_address) {
// Apply address after last "in" message transmitted // Apply address after last "in" message transmitted
USB->DADDR = set_address; USB->DADDR = set_address;
set_address = 0; set_address = 0;
} }
} else if (ep == USB_CDC_EP_BULK_OUT) {
usb_notify_bulk_out();
} else if (ep == USB_CDC_EP_BULK_IN) {
usb_notify_bulk_in();
} }
} }
if (istr & USB_ISTR_RESET) { if (istr & USB_ISTR_RESET) {

View File

@ -397,11 +397,11 @@ OTG_FS_IRQHandler(void)
} }
if (sts & USB_OTG_GINTSTS_IEPINT) { if (sts & USB_OTG_GINTSTS_IEPINT) {
// Can transmit data - disable irq and notify endpoint // Can transmit data - disable irq and notify endpoint
uint32_t daint = OTGD->DAINT; uint32_t daint = OTGD->DAINT, msk = OTGD->DAINTMSK, pend = daint & msk;
OTGD->DAINTMSK &= ~daint; OTGD->DAINTMSK = msk & ~daint;
if (daint & (1 << 0)) if (pend & (1 << 0))
usb_notify_ep0(); usb_notify_ep0();
if (daint & (1 << USB_CDC_EP_BULK_IN)) if (pend & (1 << USB_CDC_EP_BULK_IN))
usb_notify_bulk_in(); usb_notify_bulk_in();
} }
} }
@ -426,7 +426,7 @@ usb_init(void)
OTG->GUSBCFG = (USB_OTG_GUSBCFG_FDMOD | USB_OTG_GUSBCFG_PHYSEL OTG->GUSBCFG = (USB_OTG_GUSBCFG_FDMOD | USB_OTG_GUSBCFG_PHYSEL
| (6 << USB_OTG_GUSBCFG_TRDT_Pos)); | (6 << USB_OTG_GUSBCFG_TRDT_Pos));
OTGD->DCFG |= (3 << USB_OTG_DCFG_DSPD_Pos); OTGD->DCFG |= (3 << USB_OTG_DCFG_DSPD_Pos);
#if CONFIG_MACH_STM32F446 || CONFIG_MACH_STM32H7 #if CONFIG_MACH_STM32F446 || CONFIG_MACH_STM32H7 || CONFIG_MACH_STM32F7
OTG->GOTGCTL = USB_OTG_GOTGCTL_BVALOEN | USB_OTG_GOTGCTL_BVALOVAL; OTG->GOTGCTL = USB_OTG_GOTGCTL_BVALOEN | USB_OTG_GOTGCTL_BVALOVAL;
#else #else
OTG->GCCFG |= USB_OTG_GCCFG_NOVBUSSENS; OTG->GCCFG |= USB_OTG_GCCFG_NOVBUSSENS;