#include "sim_top.h" #include "tb.h" #include CONCAT5(V,TOP_NAME,_,TOP_NAME,.h) #include CONCAT5(V,TOP_NAME,_,orion_pro_top,.h) #include #include #include double sc_time_stamp() { return 0; } #define TICK_TIME 2 #define TICK_PERIOD (TICK_TIME / 2) #define SIM_TIME_MAX (1000*10) #define SIM_TIME_MAX_TICK (TICK_TIME * SIM_TIME_MAX) #define RGB(b,g,r) (((r) << 16) | ((g) << 8) | (b)) static TB* obj_tb; int key_matrix[8][11] = { /*r D0*/ { '*', Qt::Key_Escape, '+', Qt::Key_F1, Qt::Key_F2, Qt::Key_F3, '4', Qt::Key_F4, Qt::Key_F5, '7', '8' }, /*e D1*/ { Qt::Key_Minus, Qt::Key_Tab, 'J' , '1', '2', '3', 'E', '5', '6', '[', ']' }, /*s D2*/ { 0, Qt::Key_CapsLock, 'F' , 'C', 'U', 'K', 'P', 'N', 'G', 'L', 'D' }, /*u D3*/ { 0, 0, 'Q' , 'Y', 'W', 'A', 'I', 'R', 'O', 'B', 0 }, /*l D4*/ { Qt::Key_Shift, Qt::Key_Control, 0, 0xDE, 'S', 'M', ' ', 'T', 'X', Qt::Key_Left, '<' }, /*t D5*/ { '7' | Qt::KeypadModifier, '0' | Qt::KeypadModifier, '1' | Qt::KeypadModifier, '4' | Qt::KeypadModifier, Qt::Key_Plus, Qt::Key_Backspace, Qt::Key_Right, Qt::Key_Down, '>', '\\', 'V' }, /* D6*/ { '8' | Qt::KeypadModifier, '.', '2' | Qt::KeypadModifier, '5' | Qt::KeypadModifier, Qt::Key_F6, Qt::Key_Home, Qt::Key_Return, Qt::Key_Up, '/', 'H', 'Z' }, /* D7*/ { '9' | Qt::KeypadModifier, Qt::Key_Return, '3' | Qt::KeypadModifier, '6' | Qt::KeypadModifier, Qt::Key_Insert, Qt::Key_End, ';', '?', '-', '0', '9' }}; /*scancode D0 D1 D2 D3 D4 D5 D6 D7 CD0 CD1 CD2 */ static int on_step_cb(uint64_t time, TOP_CLASS* p_top) { p_top->i_clk = !p_top->i_clk; return 0; } SIM_TOP::SIM_TOP(int argc, const char** argv, thread_cb_t cb_to_draw, thread_cb_t cb_resize) { m_cur_width = 0; m_cb_start_draw = cb_to_draw; m_cb_resize = cb_resize; m_state = SIM_STATE::INIT; //this->p_gui = p_gui; //this->p_kbd = p_kbd; obj_tb = new TB(TOP_NAME_STR, argc, argv); obj_tb->init(on_step_cb); TOP_CLASS* top = obj_tb->get_top(); p_storage = (uint8_t*)top->TOP_NAME->u_orion_core->ram.m_storage; p_cfg_sw = (cfg_sw_u*) &top->TOP_NAME->cfg_sw; p_rom1_raddr = (uint32_t*) &top->TOP_NAME->rom1_addr; p_rom1_rdata = (uint32_t*) &top->TOP_NAME->rom1_rdata; p_rom2_raddr = (uint32_t*) &top->TOP_NAME->rom2_addr; p_rom2_rdata = (uint32_t*) &top->TOP_NAME->rom2_rdata; p_rom_disk_raddr = (uint32_t*) &top->TOP_NAME->rom_disk_addr; p_rom_disk_rdata = (uint32_t*) &top->TOP_NAME->rom_disk_rdata; p_video_mode = (video_mode_u*) &top->TOP_NAME->u_orion_core->video_mode; p_screen_mode = (screen_mode_u*) &top->TOP_NAME->u_orion_core->screen_mode; p_colors_pseudo = (colors_pseudo_u*)&top->TOP_NAME->u_orion_core->colors_pseudo; p_kbd_input = (kbd_port_u*) &top->TOP_NAME->u_orion_core->kbd_input; p_kbd_output = (kbd_port_u*) &top->TOP_NAME->u_orion_core->kbd_output; p_kbd_input->dw = 0xffffffff; p_rom1 = nullptr; p_rom2 = nullptr; p_rom_disk = nullptr; m_rom1_size = 0; m_rom2_size = 0; m_rom_disk_size = 0; p_thr = new std::thread(&SIM_TOP::thread_main, this); // TODO p_cfg_sw->bt = 0b00001011; } SIM_TOP::~SIM_TOP() { m_state = SIM_STATE::EXIT; // wait for sim thread finished p_thr->join(); if (p_rom1 != nullptr) { delete p_rom1; } if (p_rom2 != nullptr) { delete p_rom2; } if (p_rom_disk != nullptr) { delete p_rom_disk; } } void SIM_TOP::load_rom1(std::string fn) { if (p_rom1 != nullptr) { delete p_rom1; } std::ifstream file(fn, std::ios::binary | std::ios::ate); m_rom1_size = file.tellg(); p_rom1 = new uint8_t[m_rom1_size]; file.seekg(0, std::ios::beg); file.read((char*)p_rom1, m_rom1_size); file.close(); } void SIM_TOP::load_rom2(std::string fn) { if (p_rom2 != nullptr) { delete p_rom2; } std::ifstream file(fn, std::ios::binary | std::ios::ate); m_rom2_size = file.tellg(); p_rom2 = new uint8_t[m_rom2_size]; file.seekg(0, std::ios::beg); file.read((char*)p_rom2, m_rom2_size); file.close(); } void SIM_TOP::load_rom_disk(std::string fn) { if (p_rom_disk != nullptr) { delete p_rom_disk; } std::ifstream file(fn, std::ios::binary | std::ios::ate); m_rom_disk_size = file.tellg(); p_rom_disk = new uint8_t[m_rom_disk_size]; file.seekg(0, std::ios::beg); file.read((char*)p_rom_disk, m_rom_disk_size); file.close(); } void SIM_TOP::key_press(uint32_t key) { m_key_pressed.insert(key); } void SIM_TOP::key_release(uint32_t key) { m_key_pressed.erase(key); } void SIM_TOP::thread_main() { TOP_CLASS* top = obj_tb->get_top(); // wait for reset top->i_reset_n = 0; obj_tb->run_steps(20 * TICK_TIME); top->i_reset_n = 1; const uint32_t tick_speed = (10 * 1000 * 1000); // 10MHZ const uint32_t screen_period = tick_speed / 50; //float sim_time; uint32_t screen_cycle = 0; uint32_t sec_cycle = 0; time_t time_prev = time(0); bool screen_refresh; while (m_state != SIM_STATE::EXIT) { m_mtx.lock(); switch (m_state) { case SIM_STATE::INIT: m_mtx.lock(); break; case SIM_STATE::IDLE: m_mtx.lock(); break; case SIM_STATE::RUN: obj_tb->run_steps(2); screen_refresh = (++screen_cycle == screen_period); break; case SIM_STATE::RUN_STEP: obj_tb->run_steps(2); screen_refresh = true; break; case SIM_STATE::EXIT: return; } //sim_time = (cycle * 1.f) / cycle_len; kbd_proc(); rom_proc(); if (screen_refresh) { screen_proc(); m_cb_start_draw(); screen_cycle = 0; } if (++sec_cycle == tick_speed) { time_t time_new = time(0); time_t delta = time_new - time_prev; time_prev = time_new; printf("Sim time for 1 second: %ld\n", delta); sec_cycle = 0; } if (m_state == SIM_STATE::RUN_STEP) { // pause to next step or state change //m_mtx.lock(); } m_mtx.unlock(); } obj_tb->finish(); top->final(); } void SIM_TOP::screen_proc() { int width; width = (p_screen_mode->wide_scr) ? 512 : 384; if (m_cur_width != width) { printf("Set width %d->%d\n", m_cur_width, width); m_cur_width = width; m_cb_resize(); } for (int i=0 ; imode == 2) || (p_video_mode->mode == 3)) { return; } int scr_no = (p_video_mode->mode > 15) ? (p_screen_mode->scr_no | 1) : p_screen_mode->scr_no; uintptr_t scr_start_addr; switch (scr_no) { case 0: scr_start_addr = 0x0c000; break; case 1: scr_start_addr = 0x08000; break; case 2: scr_start_addr = 0x04000; break; case 3: scr_start_addr = 0x00000; break; } uintptr_t scr_plane_0, scr_plane_1, scr_plane_2, scr_plane_3; scr_plane_0 = scr_start_addr; scr_plane_1 = scr_start_addr + 0x04000; scr_plane_2 = scr_start_addr + 0x10000; scr_plane_3 = scr_start_addr + 0x14000; uint32_t c0, c1, c2, c3; switch (p_video_mode->mode) { case 0: c0 = RGB(0x00, 0x00, 0x00); c1 = RGB(0x00, 0xff, 0x00); break; case 1: c0 = RGB(0xc8, 0xb4, 0x28); c1 = RGB(0x32, 0xfa, 0xfa); break; case 4: c0 = RGB(0x00, 0x00, 0x00); c1 = RGB(0x00, 0x00, 0xc0); c2 = RGB(0x00, 0xc0, 0x00); c3 = RGB(0xc0, 0x00, 0x00); break; case 5: c0 = RGB(0xc0, 0xc0, 0xc0); c1 = RGB(0x00, 0x00, 0xc0); c2 = RGB(0x00, 0xc0, 0x00); c3 = RGB(0xc0, 0x00, 0x00); break; } uint32_t cur_pxl; for (int x=0 ; x> 3) << 8)) | y]; uint8_t pixels1 = p_storage[(scr_plane_1 + ((x >> 3) << 8)) | y]; uint8_t pixels2 = p_storage[(scr_plane_2 + ((x >> 3) << 8)) | y]; uint8_t pixels3 = p_storage[(scr_plane_3 + ((x >> 3) << 8)) | y]; if ((p_video_mode->mode == 14) || (p_video_mode->mode == 15)) { pixels2 = p_colors_pseudo->bt; } if ((p_video_mode->mode == 6) || (p_video_mode->mode == 7) || (p_video_mode->mode == 14) || (p_video_mode->mode == 15)) { uint32_t ci, cr, cg, cb; ci = (pixels2 & (1 << 7)) >> 1; cr = (pixels2 & (1 << 6)) ? (ci | 0xbf) : 0x00; cg = (pixels2 & (1 << 5)) ? (ci | 0xbf) : 0x00; cb = (pixels2 & (1 << 4)) ? (ci | 0xbf) : 0x00; c0 = RGB(cb, cg, cr); ci = (pixels2 & (1 << 3)) << 3; cr = (pixels2 & (1 << 2)) ? (ci | 0xbf) : 0x00; cg = (pixels2 & (1 << 1)) ? (ci | 0xbf) : 0x00; cb = (pixels2 & (1 << 0)) ? (ci | 0xbf) : 0x00; c1 = RGB(cb, cg, cr); } for (int i=0 ; i<8 ; ++i) { uint8_t pxl0 = (pixels0 & 0x80); uint8_t pxl1 = (pixels1 & 0x80); uint8_t pxl2 = (pixels2 & 0x80); uint8_t pxl3 = (pixels3 & 0x80); switch (p_video_mode->mode) { case 0: case 1: case 6: case 7: case 14: case 15: cur_pxl = (pxl0) ? c1 : c0; break; case 4: case 5: switch ((pxl0 << 1) | pxl2) { case 0: cur_pxl = c0; break; case 1: cur_pxl = c1; break; case 2: cur_pxl = c2; break; default:cur_pxl = c3; break; } break; } switch (p_video_mode->mode & 0x14) { case 0x10: c0 = 0; if (pxl0) { c0 |= RGB(0x00, 0x00, 0xbf); } if (pxl1) { c0 |= RGB(0x00, 0xbf, 0x00); } if (pxl2) { c0 |= RGB(0xbf, 0x00, 0x00); } cur_pxl = c0; break; case 0x14: c0 = 0; if (pxl0) { c0 |= RGB(0x00, 0x00, 0xbf); } if (pxl1) { c0 |= RGB(0x00, 0xbf, 0x00); } if (pxl2) { c0 |= RGB(0xbf, 0x00, 0x00); } if (pxl3) { c0 |= RGB(0x40, 0x40, 0x40); } cur_pxl = c0; break; } //[x+i, y] = cur_pxl p_screen[x + i + (y * m_cur_width)] = cur_pxl; pixels0 <<= 1; pixels1 <<= 1; pixels2 <<= 1; pixels3 <<= 1; } } } } void SIM_TOP::kbd_proc() { uint32_t scancode_msk = ((p_kbd_output->bt.PC & 0x7) << 8) | p_kbd_output->bt.PB; static uint32_t scancode_prev; if (scancode_msk == scancode_prev) { return; } uint32_t result = 0xff; for (int j=0 ; j<11 ; ++j) { if ((scancode_msk & (1 << j)) == 0) { for (int i=0 ; i<8 ; ++i) { int key = key_matrix[i][j]; if (m_key_pressed.count(key) != 0) { result &= ~(1 << i); } } } } p_kbd_input->bt.PA = result; scancode_prev = scancode_msk; } void SIM_TOP::rom_proc() { if (*p_rom1_raddr < m_rom1_size) { *p_rom1_rdata = p_rom1 [*p_rom1_raddr]; } if (*p_rom2_raddr < m_rom2_size) { *p_rom2_rdata = p_rom2 [*p_rom2_raddr]; } if (*p_rom_disk_raddr < m_rom_disk_size) { *p_rom_disk_rdata = p_rom_disk[*p_rom_disk_raddr]; } }